richie-ghost's picture
Add new SentenceTransformer model
5ddfcc8 verified
metadata
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:48393
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: Tennis champ Rafael Nadal lunges to return a ball.
    sentences:
      - The tennis champ has decided to quit playing tennis.
      - A woman stands alone at a restaurant.
      - A blond woman running
  - source_sentence: Small girl getting her face painted.
    sentences:
      - A Meijer in Illinois selling groceries.
      - Two men are posing together.
      - A small girl washing her face.
  - source_sentence: >-
      because too too often they're can be extremism that that hurts from from
      any direction regardless of whatever whatever you're arguing or concerned
      about and
    sentences:
      - If you could stir the mothers, you are done.
      - Extremism is bad.
      - Steve Ballmer is a college friend of mine.
  - source_sentence: The dog jumps over the log with a stick in its mouth.
    sentences:
      - A girl in red jumps outdoors.
      - The dog is running around with something in it's mouth.
      - The price is lower than what they pay.
  - source_sentence: A man in black shirt sits on a stool while trying to sell stuffed animals.
    sentences:
      - A man is sitting on a stool.
      - A pooch runs through the grass.
      - A young lady is sitting on a bench at the bus stop.
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: eval
          type: eval
        metrics:
          - type: cosine_accuracy@1
            value: 0.0004959394953815635
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.36964023722439193
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.4739321802740066
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5881015849399707
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.0004959394953815635
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.12321341240813066
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.09478643605480129
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05881015849399707
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.0004959394953815635
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.36964023722439193
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.4739321802740066
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5881015849399707
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3037659752455345
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2120033429995685
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22559046634335145
            name: Cosine Map@100
          - type: dot_accuracy@1
            value: 0.0005579319323042589
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.3696609013700329
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.4739321802740066
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.5881429132312525
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.0005579319323042589
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.12322030045667762
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.09478643605480132
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.05881429132312524
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.0005579319323042589
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3696609013700329
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.4739321802740066
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5881429132312525
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.30380430047413587
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2120435150827015
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.22562658480145822
            name: Dot Map@100

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sentence-transformers-all-mpnet-base-v2")
# Run inference
sentences = [
    'A man in black shirt sits on a stool while trying to sell stuffed animals.',
    'A man is sitting on a stool.',
    'A young lady is sitting on a bench at the bus stop.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0005
cosine_accuracy@3 0.3696
cosine_accuracy@5 0.4739
cosine_accuracy@10 0.5881
cosine_precision@1 0.0005
cosine_precision@3 0.1232
cosine_precision@5 0.0948
cosine_precision@10 0.0588
cosine_recall@1 0.0005
cosine_recall@3 0.3696
cosine_recall@5 0.4739
cosine_recall@10 0.5881
cosine_ndcg@10 0.3038
cosine_mrr@10 0.212
cosine_map@100 0.2256
dot_accuracy@1 0.0006
dot_accuracy@3 0.3697
dot_accuracy@5 0.4739
dot_accuracy@10 0.5881
dot_precision@1 0.0006
dot_precision@3 0.1232
dot_precision@5 0.0948
dot_precision@10 0.0588
dot_recall@1 0.0006
dot_recall@3 0.3697
dot_recall@5 0.4739
dot_recall@10 0.5881
dot_ndcg@10 0.3038
dot_mrr@10 0.212
dot_map@100 0.2256

Training Details

Training Dataset

Unnamed Dataset

  • Size: 48,393 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 6 tokens
    • mean: 18.73 tokens
    • max: 124 tokens
    • min: 4 tokens
    • mean: 11.35 tokens
    • max: 62 tokens
  • Samples:
    sentence_0 sentence_1
    A group of kids in red and white playing soccer. There are kids playing ball in a soccer tournament.
    I had a great time at the theme park with my family. Did you have fun at the theme park with your family?
    A black and white elderly gentlemen riding an am-track. A man is on a train.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss eval_dot_map@100
0.1653 500 0.0446 0.2186
0.3306 1000 0.0544 0.2226
0.4959 1500 0.0419 0.2191
0.6612 2000 0.0532 0.2210
0.8264 2500 0.0438 0.2209
0.9917 3000 0.0422 0.2220
1.0 3025 - 0.2225
1.1570 3500 0.021 0.2236
1.3223 4000 0.0163 0.2243
1.4876 4500 0.0158 0.2221
1.6529 5000 0.0178 0.2221
1.8182 5500 0.0154 0.2222
1.9835 6000 0.0145 0.2228
2.0 6050 - 0.2247
2.1488 6500 0.0098 0.2250
2.3140 7000 0.0076 0.2239
2.4793 7500 0.0069 0.2253
2.6446 8000 0.0073 0.2245
2.8099 8500 0.0063 0.2245
2.9752 9000 0.0074 0.2251
3.0 9075 - 0.2251
3.1405 9500 0.0044 0.2256
3.3058 10000 0.0043 0.2259
3.4711 10500 0.0038 0.2261
3.6364 11000 0.0039 0.2256
3.8017 11500 0.0037 0.2251
3.9669 12000 0.0043 0.2256
4.0 12100 - 0.2256

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 1.0.1
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}