richie-ghost commited on
Commit
5ddfcc8
1 Parent(s): 1ae4c11

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:48393
42
+ - loss:MultipleNegativesRankingLoss
43
+ widget:
44
+ - source_sentence: Tennis champ Rafael Nadal lunges to return a ball.
45
+ sentences:
46
+ - The tennis champ has decided to quit playing tennis.
47
+ - A woman stands alone at a restaurant.
48
+ - A blond woman running
49
+ - source_sentence: Small girl getting her face painted.
50
+ sentences:
51
+ - A Meijer in Illinois selling groceries.
52
+ - Two men are posing together.
53
+ - A small girl washing her face.
54
+ - source_sentence: because too too often they're can be extremism that that hurts
55
+ from from any direction regardless of whatever whatever you're arguing or concerned
56
+ about and
57
+ sentences:
58
+ - If you could stir the mothers, you are done.
59
+ - Extremism is bad.
60
+ - Steve Ballmer is a college friend of mine.
61
+ - source_sentence: The dog jumps over the log with a stick in its mouth.
62
+ sentences:
63
+ - A girl in red jumps outdoors.
64
+ - The dog is running around with something in it's mouth.
65
+ - The price is lower than what they pay.
66
+ - source_sentence: A man in black shirt sits on a stool while trying to sell stuffed
67
+ animals.
68
+ sentences:
69
+ - A man is sitting on a stool.
70
+ - A pooch runs through the grass.
71
+ - A young lady is sitting on a bench at the bus stop.
72
+ model-index:
73
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
74
+ results:
75
+ - task:
76
+ type: information-retrieval
77
+ name: Information Retrieval
78
+ dataset:
79
+ name: eval
80
+ type: eval
81
+ metrics:
82
+ - type: cosine_accuracy@1
83
+ value: 0.0004959394953815635
84
+ name: Cosine Accuracy@1
85
+ - type: cosine_accuracy@3
86
+ value: 0.36964023722439193
87
+ name: Cosine Accuracy@3
88
+ - type: cosine_accuracy@5
89
+ value: 0.4739321802740066
90
+ name: Cosine Accuracy@5
91
+ - type: cosine_accuracy@10
92
+ value: 0.5881015849399707
93
+ name: Cosine Accuracy@10
94
+ - type: cosine_precision@1
95
+ value: 0.0004959394953815635
96
+ name: Cosine Precision@1
97
+ - type: cosine_precision@3
98
+ value: 0.12321341240813066
99
+ name: Cosine Precision@3
100
+ - type: cosine_precision@5
101
+ value: 0.09478643605480129
102
+ name: Cosine Precision@5
103
+ - type: cosine_precision@10
104
+ value: 0.05881015849399707
105
+ name: Cosine Precision@10
106
+ - type: cosine_recall@1
107
+ value: 0.0004959394953815635
108
+ name: Cosine Recall@1
109
+ - type: cosine_recall@3
110
+ value: 0.36964023722439193
111
+ name: Cosine Recall@3
112
+ - type: cosine_recall@5
113
+ value: 0.4739321802740066
114
+ name: Cosine Recall@5
115
+ - type: cosine_recall@10
116
+ value: 0.5881015849399707
117
+ name: Cosine Recall@10
118
+ - type: cosine_ndcg@10
119
+ value: 0.3037659752455345
120
+ name: Cosine Ndcg@10
121
+ - type: cosine_mrr@10
122
+ value: 0.2120033429995685
123
+ name: Cosine Mrr@10
124
+ - type: cosine_map@100
125
+ value: 0.22559046634335145
126
+ name: Cosine Map@100
127
+ - type: dot_accuracy@1
128
+ value: 0.0005579319323042589
129
+ name: Dot Accuracy@1
130
+ - type: dot_accuracy@3
131
+ value: 0.3696609013700329
132
+ name: Dot Accuracy@3
133
+ - type: dot_accuracy@5
134
+ value: 0.4739321802740066
135
+ name: Dot Accuracy@5
136
+ - type: dot_accuracy@10
137
+ value: 0.5881429132312525
138
+ name: Dot Accuracy@10
139
+ - type: dot_precision@1
140
+ value: 0.0005579319323042589
141
+ name: Dot Precision@1
142
+ - type: dot_precision@3
143
+ value: 0.12322030045667762
144
+ name: Dot Precision@3
145
+ - type: dot_precision@5
146
+ value: 0.09478643605480132
147
+ name: Dot Precision@5
148
+ - type: dot_precision@10
149
+ value: 0.05881429132312524
150
+ name: Dot Precision@10
151
+ - type: dot_recall@1
152
+ value: 0.0005579319323042589
153
+ name: Dot Recall@1
154
+ - type: dot_recall@3
155
+ value: 0.3696609013700329
156
+ name: Dot Recall@3
157
+ - type: dot_recall@5
158
+ value: 0.4739321802740066
159
+ name: Dot Recall@5
160
+ - type: dot_recall@10
161
+ value: 0.5881429132312525
162
+ name: Dot Recall@10
163
+ - type: dot_ndcg@10
164
+ value: 0.30380430047413587
165
+ name: Dot Ndcg@10
166
+ - type: dot_mrr@10
167
+ value: 0.2120435150827015
168
+ name: Dot Mrr@10
169
+ - type: dot_map@100
170
+ value: 0.22562658480145822
171
+ name: Dot Map@100
172
+ ---
173
+
174
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
175
+
176
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
177
+
178
+ ## Model Details
179
+
180
+ ### Model Description
181
+ - **Model Type:** Sentence Transformer
182
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
183
+ - **Maximum Sequence Length:** 384 tokens
184
+ - **Output Dimensionality:** 768 tokens
185
+ - **Similarity Function:** Cosine Similarity
186
+ <!-- - **Training Dataset:** Unknown -->
187
+ <!-- - **Language:** Unknown -->
188
+ <!-- - **License:** Unknown -->
189
+
190
+ ### Model Sources
191
+
192
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
193
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
194
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
195
+
196
+ ### Full Model Architecture
197
+
198
+ ```
199
+ SentenceTransformer(
200
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
201
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
202
+ (2): Normalize()
203
+ )
204
+ ```
205
+
206
+ ## Usage
207
+
208
+ ### Direct Usage (Sentence Transformers)
209
+
210
+ First install the Sentence Transformers library:
211
+
212
+ ```bash
213
+ pip install -U sentence-transformers
214
+ ```
215
+
216
+ Then you can load this model and run inference.
217
+ ```python
218
+ from sentence_transformers import SentenceTransformer
219
+
220
+ # Download from the 🤗 Hub
221
+ model = SentenceTransformer("richie-ghost/sentence-transformers-all-mpnet-base-v2")
222
+ # Run inference
223
+ sentences = [
224
+ 'A man in black shirt sits on a stool while trying to sell stuffed animals.',
225
+ 'A man is sitting on a stool.',
226
+ 'A young lady is sitting on a bench at the bus stop.',
227
+ ]
228
+ embeddings = model.encode(sentences)
229
+ print(embeddings.shape)
230
+ # [3, 768]
231
+
232
+ # Get the similarity scores for the embeddings
233
+ similarities = model.similarity(embeddings, embeddings)
234
+ print(similarities.shape)
235
+ # [3, 3]
236
+ ```
237
+
238
+ <!--
239
+ ### Direct Usage (Transformers)
240
+
241
+ <details><summary>Click to see the direct usage in Transformers</summary>
242
+
243
+ </details>
244
+ -->
245
+
246
+ <!--
247
+ ### Downstream Usage (Sentence Transformers)
248
+
249
+ You can finetune this model on your own dataset.
250
+
251
+ <details><summary>Click to expand</summary>
252
+
253
+ </details>
254
+ -->
255
+
256
+ <!--
257
+ ### Out-of-Scope Use
258
+
259
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
260
+ -->
261
+
262
+ ## Evaluation
263
+
264
+ ### Metrics
265
+
266
+ #### Information Retrieval
267
+ * Dataset: `eval`
268
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
269
+
270
+ | Metric | Value |
271
+ |:--------------------|:-----------|
272
+ | cosine_accuracy@1 | 0.0005 |
273
+ | cosine_accuracy@3 | 0.3696 |
274
+ | cosine_accuracy@5 | 0.4739 |
275
+ | cosine_accuracy@10 | 0.5881 |
276
+ | cosine_precision@1 | 0.0005 |
277
+ | cosine_precision@3 | 0.1232 |
278
+ | cosine_precision@5 | 0.0948 |
279
+ | cosine_precision@10 | 0.0588 |
280
+ | cosine_recall@1 | 0.0005 |
281
+ | cosine_recall@3 | 0.3696 |
282
+ | cosine_recall@5 | 0.4739 |
283
+ | cosine_recall@10 | 0.5881 |
284
+ | cosine_ndcg@10 | 0.3038 |
285
+ | cosine_mrr@10 | 0.212 |
286
+ | cosine_map@100 | 0.2256 |
287
+ | dot_accuracy@1 | 0.0006 |
288
+ | dot_accuracy@3 | 0.3697 |
289
+ | dot_accuracy@5 | 0.4739 |
290
+ | dot_accuracy@10 | 0.5881 |
291
+ | dot_precision@1 | 0.0006 |
292
+ | dot_precision@3 | 0.1232 |
293
+ | dot_precision@5 | 0.0948 |
294
+ | dot_precision@10 | 0.0588 |
295
+ | dot_recall@1 | 0.0006 |
296
+ | dot_recall@3 | 0.3697 |
297
+ | dot_recall@5 | 0.4739 |
298
+ | dot_recall@10 | 0.5881 |
299
+ | dot_ndcg@10 | 0.3038 |
300
+ | dot_mrr@10 | 0.212 |
301
+ | **dot_map@100** | **0.2256** |
302
+
303
+ <!--
304
+ ## Bias, Risks and Limitations
305
+
306
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
307
+ -->
308
+
309
+ <!--
310
+ ### Recommendations
311
+
312
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
313
+ -->
314
+
315
+ ## Training Details
316
+
317
+ ### Training Dataset
318
+
319
+ #### Unnamed Dataset
320
+
321
+
322
+ * Size: 48,393 training samples
323
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
324
+ * Approximate statistics based on the first 1000 samples:
325
+ | | sentence_0 | sentence_1 |
326
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
327
+ | type | string | string |
328
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.73 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.35 tokens</li><li>max: 62 tokens</li></ul> |
329
+ * Samples:
330
+ | sentence_0 | sentence_1 |
331
+ |:---------------------------------------------------------------------|:------------------------------------------------------------------|
332
+ | <code>A group of kids in red and white playing soccer.</code> | <code>There are kids playing ball in a soccer tournament.</code> |
333
+ | <code>I had a great time at the theme park with my family.</code> | <code>Did you have fun at the theme park with your family?</code> |
334
+ | <code>A black and white elderly gentlemen riding an am-track.</code> | <code>A man is on a train.</code> |
335
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
336
+ ```json
337
+ {
338
+ "scale": 20.0,
339
+ "similarity_fct": "cos_sim"
340
+ }
341
+ ```
342
+
343
+ ### Training Hyperparameters
344
+ #### Non-Default Hyperparameters
345
+
346
+ - `eval_strategy`: steps
347
+ - `per_device_train_batch_size`: 16
348
+ - `per_device_eval_batch_size`: 16
349
+ - `num_train_epochs`: 4
350
+ - `multi_dataset_batch_sampler`: round_robin
351
+
352
+ #### All Hyperparameters
353
+ <details><summary>Click to expand</summary>
354
+
355
+ - `overwrite_output_dir`: False
356
+ - `do_predict`: False
357
+ - `eval_strategy`: steps
358
+ - `prediction_loss_only`: True
359
+ - `per_device_train_batch_size`: 16
360
+ - `per_device_eval_batch_size`: 16
361
+ - `per_gpu_train_batch_size`: None
362
+ - `per_gpu_eval_batch_size`: None
363
+ - `gradient_accumulation_steps`: 1
364
+ - `eval_accumulation_steps`: None
365
+ - `torch_empty_cache_steps`: None
366
+ - `learning_rate`: 5e-05
367
+ - `weight_decay`: 0.0
368
+ - `adam_beta1`: 0.9
369
+ - `adam_beta2`: 0.999
370
+ - `adam_epsilon`: 1e-08
371
+ - `max_grad_norm`: 1
372
+ - `num_train_epochs`: 4
373
+ - `max_steps`: -1
374
+ - `lr_scheduler_type`: linear
375
+ - `lr_scheduler_kwargs`: {}
376
+ - `warmup_ratio`: 0.0
377
+ - `warmup_steps`: 0
378
+ - `log_level`: passive
379
+ - `log_level_replica`: warning
380
+ - `log_on_each_node`: True
381
+ - `logging_nan_inf_filter`: True
382
+ - `save_safetensors`: True
383
+ - `save_on_each_node`: False
384
+ - `save_only_model`: False
385
+ - `restore_callback_states_from_checkpoint`: False
386
+ - `no_cuda`: False
387
+ - `use_cpu`: False
388
+ - `use_mps_device`: False
389
+ - `seed`: 42
390
+ - `data_seed`: None
391
+ - `jit_mode_eval`: False
392
+ - `use_ipex`: False
393
+ - `bf16`: False
394
+ - `fp16`: False
395
+ - `fp16_opt_level`: O1
396
+ - `half_precision_backend`: auto
397
+ - `bf16_full_eval`: False
398
+ - `fp16_full_eval`: False
399
+ - `tf32`: None
400
+ - `local_rank`: 0
401
+ - `ddp_backend`: None
402
+ - `tpu_num_cores`: None
403
+ - `tpu_metrics_debug`: False
404
+ - `debug`: []
405
+ - `dataloader_drop_last`: False
406
+ - `dataloader_num_workers`: 0
407
+ - `dataloader_prefetch_factor`: None
408
+ - `past_index`: -1
409
+ - `disable_tqdm`: False
410
+ - `remove_unused_columns`: True
411
+ - `label_names`: None
412
+ - `load_best_model_at_end`: False
413
+ - `ignore_data_skip`: False
414
+ - `fsdp`: []
415
+ - `fsdp_min_num_params`: 0
416
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
417
+ - `fsdp_transformer_layer_cls_to_wrap`: None
418
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
419
+ - `deepspeed`: None
420
+ - `label_smoothing_factor`: 0.0
421
+ - `optim`: adamw_torch
422
+ - `optim_args`: None
423
+ - `adafactor`: False
424
+ - `group_by_length`: False
425
+ - `length_column_name`: length
426
+ - `ddp_find_unused_parameters`: None
427
+ - `ddp_bucket_cap_mb`: None
428
+ - `ddp_broadcast_buffers`: False
429
+ - `dataloader_pin_memory`: True
430
+ - `dataloader_persistent_workers`: False
431
+ - `skip_memory_metrics`: True
432
+ - `use_legacy_prediction_loop`: False
433
+ - `push_to_hub`: False
434
+ - `resume_from_checkpoint`: None
435
+ - `hub_model_id`: None
436
+ - `hub_strategy`: every_save
437
+ - `hub_private_repo`: False
438
+ - `hub_always_push`: False
439
+ - `gradient_checkpointing`: False
440
+ - `gradient_checkpointing_kwargs`: None
441
+ - `include_inputs_for_metrics`: False
442
+ - `eval_do_concat_batches`: True
443
+ - `fp16_backend`: auto
444
+ - `push_to_hub_model_id`: None
445
+ - `push_to_hub_organization`: None
446
+ - `mp_parameters`:
447
+ - `auto_find_batch_size`: False
448
+ - `full_determinism`: False
449
+ - `torchdynamo`: None
450
+ - `ray_scope`: last
451
+ - `ddp_timeout`: 1800
452
+ - `torch_compile`: False
453
+ - `torch_compile_backend`: None
454
+ - `torch_compile_mode`: None
455
+ - `dispatch_batches`: None
456
+ - `split_batches`: None
457
+ - `include_tokens_per_second`: False
458
+ - `include_num_input_tokens_seen`: False
459
+ - `neftune_noise_alpha`: None
460
+ - `optim_target_modules`: None
461
+ - `batch_eval_metrics`: False
462
+ - `eval_on_start`: False
463
+ - `eval_use_gather_object`: False
464
+ - `batch_sampler`: batch_sampler
465
+ - `multi_dataset_batch_sampler`: round_robin
466
+
467
+ </details>
468
+
469
+ ### Training Logs
470
+ | Epoch | Step | Training Loss | eval_dot_map@100 |
471
+ |:------:|:-----:|:-------------:|:----------------:|
472
+ | 0.1653 | 500 | 0.0446 | 0.2186 |
473
+ | 0.3306 | 1000 | 0.0544 | 0.2226 |
474
+ | 0.4959 | 1500 | 0.0419 | 0.2191 |
475
+ | 0.6612 | 2000 | 0.0532 | 0.2210 |
476
+ | 0.8264 | 2500 | 0.0438 | 0.2209 |
477
+ | 0.9917 | 3000 | 0.0422 | 0.2220 |
478
+ | 1.0 | 3025 | - | 0.2225 |
479
+ | 1.1570 | 3500 | 0.021 | 0.2236 |
480
+ | 1.3223 | 4000 | 0.0163 | 0.2243 |
481
+ | 1.4876 | 4500 | 0.0158 | 0.2221 |
482
+ | 1.6529 | 5000 | 0.0178 | 0.2221 |
483
+ | 1.8182 | 5500 | 0.0154 | 0.2222 |
484
+ | 1.9835 | 6000 | 0.0145 | 0.2228 |
485
+ | 2.0 | 6050 | - | 0.2247 |
486
+ | 2.1488 | 6500 | 0.0098 | 0.2250 |
487
+ | 2.3140 | 7000 | 0.0076 | 0.2239 |
488
+ | 2.4793 | 7500 | 0.0069 | 0.2253 |
489
+ | 2.6446 | 8000 | 0.0073 | 0.2245 |
490
+ | 2.8099 | 8500 | 0.0063 | 0.2245 |
491
+ | 2.9752 | 9000 | 0.0074 | 0.2251 |
492
+ | 3.0 | 9075 | - | 0.2251 |
493
+ | 3.1405 | 9500 | 0.0044 | 0.2256 |
494
+ | 3.3058 | 10000 | 0.0043 | 0.2259 |
495
+ | 3.4711 | 10500 | 0.0038 | 0.2261 |
496
+ | 3.6364 | 11000 | 0.0039 | 0.2256 |
497
+ | 3.8017 | 11500 | 0.0037 | 0.2251 |
498
+ | 3.9669 | 12000 | 0.0043 | 0.2256 |
499
+ | 4.0 | 12100 | - | 0.2256 |
500
+
501
+
502
+ ### Framework Versions
503
+ - Python: 3.10.12
504
+ - Sentence Transformers: 3.2.1
505
+ - Transformers: 4.44.2
506
+ - PyTorch: 2.5.0+cu121
507
+ - Accelerate: 1.0.1
508
+ - Datasets: 3.0.2
509
+ - Tokenizers: 0.19.1
510
+
511
+ ## Citation
512
+
513
+ ### BibTeX
514
+
515
+ #### Sentence Transformers
516
+ ```bibtex
517
+ @inproceedings{reimers-2019-sentence-bert,
518
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
519
+ author = "Reimers, Nils and Gurevych, Iryna",
520
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
521
+ month = "11",
522
+ year = "2019",
523
+ publisher = "Association for Computational Linguistics",
524
+ url = "https://arxiv.org/abs/1908.10084",
525
+ }
526
+ ```
527
+
528
+ #### MultipleNegativesRankingLoss
529
+ ```bibtex
530
+ @misc{henderson2017efficient,
531
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
532
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
533
+ year={2017},
534
+ eprint={1705.00652},
535
+ archivePrefix={arXiv},
536
+ primaryClass={cs.CL}
537
+ }
538
+ ```
539
+
540
+ <!--
541
+ ## Glossary
542
+
543
+ *Clearly define terms in order to be accessible across audiences.*
544
+ -->
545
+
546
+ <!--
547
+ ## Model Card Authors
548
+
549
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
550
+ -->
551
+
552
+ <!--
553
+ ## Model Card Contact
554
+
555
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
556
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3631441f960d16b991859063584606dd2baffa8a4d708ee2fd03af8fdb721f8c
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff