File size: 18,375 Bytes
5ddfcc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:48393
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Tennis champ Rafael Nadal lunges to return a ball.
  sentences:
  - The tennis champ has decided to quit playing tennis.
  - A woman stands alone at a restaurant.
  - A blond woman running
- source_sentence: Small girl getting her face painted.
  sentences:
  - A Meijer in Illinois selling groceries.
  - Two men are posing together.
  - A small girl washing her face.
- source_sentence: because too too often they're can be extremism that that hurts
    from from any direction regardless of whatever whatever you're arguing or concerned
    about and
  sentences:
  - If you could stir the mothers, you are done.
  - Extremism is bad.
  - Steve Ballmer is a college friend of mine.
- source_sentence: The dog jumps over the log with a stick in its mouth.
  sentences:
  - A girl in red jumps outdoors.
  - The dog is running around with something in it's mouth.
  - The price is lower than what they pay.
- source_sentence: A man in black shirt sits on a stool while trying to sell stuffed
    animals.
  sentences:
  - A man is sitting on a stool.
  - A pooch runs through the grass.
  - A young lady is sitting on a bench at the bus stop.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: eval
      type: eval
    metrics:
    - type: cosine_accuracy@1
      value: 0.0004959394953815635
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.36964023722439193
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.4739321802740066
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5881015849399707
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.0004959394953815635
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.12321341240813066
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09478643605480129
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05881015849399707
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.0004959394953815635
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.36964023722439193
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4739321802740066
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5881015849399707
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3037659752455345
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2120033429995685
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22559046634335145
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.0005579319323042589
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.3696609013700329
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.4739321802740066
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.5881429132312525
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.0005579319323042589
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.12322030045667762
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.09478643605480132
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.05881429132312524
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.0005579319323042589
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.3696609013700329
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.4739321802740066
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5881429132312525
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.30380430047413587
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.2120435150827015
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.22562658480145822
      name: Dot Map@100
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sentence-transformers-all-mpnet-base-v2")
# Run inference
sentences = [
    'A man in black shirt sits on a stool while trying to sell stuffed animals.',
    'A man is sitting on a stool.',
    'A young lady is sitting on a bench at the bus stop.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0005     |
| cosine_accuracy@3   | 0.3696     |
| cosine_accuracy@5   | 0.4739     |
| cosine_accuracy@10  | 0.5881     |
| cosine_precision@1  | 0.0005     |
| cosine_precision@3  | 0.1232     |
| cosine_precision@5  | 0.0948     |
| cosine_precision@10 | 0.0588     |
| cosine_recall@1     | 0.0005     |
| cosine_recall@3     | 0.3696     |
| cosine_recall@5     | 0.4739     |
| cosine_recall@10    | 0.5881     |
| cosine_ndcg@10      | 0.3038     |
| cosine_mrr@10       | 0.212      |
| cosine_map@100      | 0.2256     |
| dot_accuracy@1      | 0.0006     |
| dot_accuracy@3      | 0.3697     |
| dot_accuracy@5      | 0.4739     |
| dot_accuracy@10     | 0.5881     |
| dot_precision@1     | 0.0006     |
| dot_precision@3     | 0.1232     |
| dot_precision@5     | 0.0948     |
| dot_precision@10    | 0.0588     |
| dot_recall@1        | 0.0006     |
| dot_recall@3        | 0.3697     |
| dot_recall@5        | 0.4739     |
| dot_recall@10       | 0.5881     |
| dot_ndcg@10         | 0.3038     |
| dot_mrr@10          | 0.212      |
| **dot_map@100**     | **0.2256** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 48,393 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                         | sentence_1                                                                        |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 18.73 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.35 tokens</li><li>max: 62 tokens</li></ul> |
* Samples:
  | sentence_0                                                           | sentence_1                                                        |
  |:---------------------------------------------------------------------|:------------------------------------------------------------------|
  | <code>A group of kids in red and white playing soccer.</code>        | <code>There are kids playing ball in a soccer tournament.</code>  |
  | <code>I had a great time at the theme park with my family.</code>    | <code>Did you have fun at the theme park with your family?</code> |
  | <code>A black and white elderly gentlemen riding an am-track.</code> | <code>A man is on a train.</code>                                 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step  | Training Loss | eval_dot_map@100 |
|:------:|:-----:|:-------------:|:----------------:|
| 0.1653 | 500   | 0.0446        | 0.2186           |
| 0.3306 | 1000  | 0.0544        | 0.2226           |
| 0.4959 | 1500  | 0.0419        | 0.2191           |
| 0.6612 | 2000  | 0.0532        | 0.2210           |
| 0.8264 | 2500  | 0.0438        | 0.2209           |
| 0.9917 | 3000  | 0.0422        | 0.2220           |
| 1.0    | 3025  | -             | 0.2225           |
| 1.1570 | 3500  | 0.021         | 0.2236           |
| 1.3223 | 4000  | 0.0163        | 0.2243           |
| 1.4876 | 4500  | 0.0158        | 0.2221           |
| 1.6529 | 5000  | 0.0178        | 0.2221           |
| 1.8182 | 5500  | 0.0154        | 0.2222           |
| 1.9835 | 6000  | 0.0145        | 0.2228           |
| 2.0    | 6050  | -             | 0.2247           |
| 2.1488 | 6500  | 0.0098        | 0.2250           |
| 2.3140 | 7000  | 0.0076        | 0.2239           |
| 2.4793 | 7500  | 0.0069        | 0.2253           |
| 2.6446 | 8000  | 0.0073        | 0.2245           |
| 2.8099 | 8500  | 0.0063        | 0.2245           |
| 2.9752 | 9000  | 0.0074        | 0.2251           |
| 3.0    | 9075  | -             | 0.2251           |
| 3.1405 | 9500  | 0.0044        | 0.2256           |
| 3.3058 | 10000 | 0.0043        | 0.2259           |
| 3.4711 | 10500 | 0.0038        | 0.2261           |
| 3.6364 | 11000 | 0.0039        | 0.2256           |
| 3.8017 | 11500 | 0.0037        | 0.2251           |
| 3.9669 | 12000 | 0.0043        | 0.2256           |
| 4.0    | 12100 | -             | 0.2256           |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->