File size: 18,375 Bytes
5ddfcc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:48393
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Tennis champ Rafael Nadal lunges to return a ball.
sentences:
- The tennis champ has decided to quit playing tennis.
- A woman stands alone at a restaurant.
- A blond woman running
- source_sentence: Small girl getting her face painted.
sentences:
- A Meijer in Illinois selling groceries.
- Two men are posing together.
- A small girl washing her face.
- source_sentence: because too too often they're can be extremism that that hurts
from from any direction regardless of whatever whatever you're arguing or concerned
about and
sentences:
- If you could stir the mothers, you are done.
- Extremism is bad.
- Steve Ballmer is a college friend of mine.
- source_sentence: The dog jumps over the log with a stick in its mouth.
sentences:
- A girl in red jumps outdoors.
- The dog is running around with something in it's mouth.
- The price is lower than what they pay.
- source_sentence: A man in black shirt sits on a stool while trying to sell stuffed
animals.
sentences:
- A man is sitting on a stool.
- A pooch runs through the grass.
- A young lady is sitting on a bench at the bus stop.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy@1
value: 0.0004959394953815635
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36964023722439193
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4739321802740066
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5881015849399707
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0004959394953815635
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12321341240813066
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09478643605480129
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05881015849399707
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0004959394953815635
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.36964023722439193
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4739321802740066
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5881015849399707
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3037659752455345
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2120033429995685
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22559046634335145
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.0005579319323042589
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.3696609013700329
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4739321802740066
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.5881429132312525
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.0005579319323042589
name: Dot Precision@1
- type: dot_precision@3
value: 0.12322030045667762
name: Dot Precision@3
- type: dot_precision@5
value: 0.09478643605480132
name: Dot Precision@5
- type: dot_precision@10
value: 0.05881429132312524
name: Dot Precision@10
- type: dot_recall@1
value: 0.0005579319323042589
name: Dot Recall@1
- type: dot_recall@3
value: 0.3696609013700329
name: Dot Recall@3
- type: dot_recall@5
value: 0.4739321802740066
name: Dot Recall@5
- type: dot_recall@10
value: 0.5881429132312525
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.30380430047413587
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.2120435150827015
name: Dot Mrr@10
- type: dot_map@100
value: 0.22562658480145822
name: Dot Map@100
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision f1b1b820e405bb8644f5e8d9a3b98f9c9e0a3c58 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sentence-transformers-all-mpnet-base-v2")
# Run inference
sentences = [
'A man in black shirt sits on a stool while trying to sell stuffed animals.',
'A man is sitting on a stool.',
'A young lady is sitting on a bench at the bus stop.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0005 |
| cosine_accuracy@3 | 0.3696 |
| cosine_accuracy@5 | 0.4739 |
| cosine_accuracy@10 | 0.5881 |
| cosine_precision@1 | 0.0005 |
| cosine_precision@3 | 0.1232 |
| cosine_precision@5 | 0.0948 |
| cosine_precision@10 | 0.0588 |
| cosine_recall@1 | 0.0005 |
| cosine_recall@3 | 0.3696 |
| cosine_recall@5 | 0.4739 |
| cosine_recall@10 | 0.5881 |
| cosine_ndcg@10 | 0.3038 |
| cosine_mrr@10 | 0.212 |
| cosine_map@100 | 0.2256 |
| dot_accuracy@1 | 0.0006 |
| dot_accuracy@3 | 0.3697 |
| dot_accuracy@5 | 0.4739 |
| dot_accuracy@10 | 0.5881 |
| dot_precision@1 | 0.0006 |
| dot_precision@3 | 0.1232 |
| dot_precision@5 | 0.0948 |
| dot_precision@10 | 0.0588 |
| dot_recall@1 | 0.0006 |
| dot_recall@3 | 0.3697 |
| dot_recall@5 | 0.4739 |
| dot_recall@10 | 0.5881 |
| dot_ndcg@10 | 0.3038 |
| dot_mrr@10 | 0.212 |
| **dot_map@100** | **0.2256** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 48,393 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 18.73 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.35 tokens</li><li>max: 62 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:---------------------------------------------------------------------|:------------------------------------------------------------------|
| <code>A group of kids in red and white playing soccer.</code> | <code>There are kids playing ball in a soccer tournament.</code> |
| <code>I had a great time at the theme park with my family.</code> | <code>Did you have fun at the theme park with your family?</code> |
| <code>A black and white elderly gentlemen riding an am-track.</code> | <code>A man is on a train.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | eval_dot_map@100 |
|:------:|:-----:|:-------------:|:----------------:|
| 0.1653 | 500 | 0.0446 | 0.2186 |
| 0.3306 | 1000 | 0.0544 | 0.2226 |
| 0.4959 | 1500 | 0.0419 | 0.2191 |
| 0.6612 | 2000 | 0.0532 | 0.2210 |
| 0.8264 | 2500 | 0.0438 | 0.2209 |
| 0.9917 | 3000 | 0.0422 | 0.2220 |
| 1.0 | 3025 | - | 0.2225 |
| 1.1570 | 3500 | 0.021 | 0.2236 |
| 1.3223 | 4000 | 0.0163 | 0.2243 |
| 1.4876 | 4500 | 0.0158 | 0.2221 |
| 1.6529 | 5000 | 0.0178 | 0.2221 |
| 1.8182 | 5500 | 0.0154 | 0.2222 |
| 1.9835 | 6000 | 0.0145 | 0.2228 |
| 2.0 | 6050 | - | 0.2247 |
| 2.1488 | 6500 | 0.0098 | 0.2250 |
| 2.3140 | 7000 | 0.0076 | 0.2239 |
| 2.4793 | 7500 | 0.0069 | 0.2253 |
| 2.6446 | 8000 | 0.0073 | 0.2245 |
| 2.8099 | 8500 | 0.0063 | 0.2245 |
| 2.9752 | 9000 | 0.0074 | 0.2251 |
| 3.0 | 9075 | - | 0.2251 |
| 3.1405 | 9500 | 0.0044 | 0.2256 |
| 3.3058 | 10000 | 0.0043 | 0.2259 |
| 3.4711 | 10500 | 0.0038 | 0.2261 |
| 3.6364 | 11000 | 0.0039 | 0.2256 |
| 3.8017 | 11500 | 0.0037 | 0.2251 |
| 3.9669 | 12000 | 0.0043 | 0.2256 |
| 4.0 | 12100 | - | 0.2256 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |