Edit model card

IRyS-NER-Recruitment

This model is a fine-tuned version of roberta-base on a resume dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0775
  • Precision: 0.7828
  • Recall: 0.8439
  • F1: 0.8122
  • Accuracy: 0.9778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 17 0.4337 0.6471 0.0799 0.1422 0.9024
No log 2.0 34 0.2148 0.4065 0.3612 0.3825 0.9312
No log 3.0 51 0.1374 0.6051 0.7160 0.6559 0.9607
No log 4.0 68 0.0988 0.6835 0.7995 0.7369 0.9669
No log 5.0 85 0.0926 0.7103 0.8321 0.7664 0.9692
No log 6.0 102 0.0880 0.7364 0.8721 0.7985 0.9723
No log 7.0 119 0.0804 0.7542 0.8185 0.7850 0.9733
No log 8.0 136 0.0839 0.7490 0.8639 0.8024 0.9733
No log 9.0 153 0.0805 0.7720 0.8267 0.7984 0.9767
No log 10.0 170 0.0799 0.7786 0.8267 0.8019 0.9761
No log 11.0 187 0.0777 0.7841 0.8339 0.8083 0.9775
No log 12.0 204 0.0804 0.7644 0.8566 0.8079 0.9761
No log 13.0 221 0.0775 0.7828 0.8439 0.8122 0.9778
No log 14.0 238 0.0810 0.7674 0.8593 0.8108 0.9771
No log 15.0 255 0.0823 0.7717 0.8557 0.8115 0.9776

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using reyhanemyr/IRyS-NER-Recruitment 1