Model Card of lmqg/t5-base-squadshifts-nyt-qg
This model is fine-tuned version of lmqg/t5-base-squad for question generation task on the lmqg/qg_squadshifts (dataset_name: nyt) via lmqg
.
Overview
- Language model: lmqg/t5-base-squad
- Language: en
- Training data: lmqg/qg_squadshifts (nyt)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-base-squadshifts-nyt-qg")
# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-base-squadshifts-nyt-qg")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 92.68 | nyt | lmqg/qg_squadshifts |
Bleu_1 | 24.77 | nyt | lmqg/qg_squadshifts |
Bleu_2 | 16.48 | nyt | lmqg/qg_squadshifts |
Bleu_3 | 11.67 | nyt | lmqg/qg_squadshifts |
Bleu_4 | 8.53 | nyt | lmqg/qg_squadshifts |
METEOR | 25.21 | nyt | lmqg/qg_squadshifts |
MoverScore | 64.7 | nyt | lmqg/qg_squadshifts |
ROUGE_L | 24.93 | nyt | lmqg/qg_squadshifts |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_squadshifts
- dataset_name: nyt
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: ['qg']
- model: lmqg/t5-base-squad
- max_length: 512
- max_length_output: 32
- epoch: 5
- batch: 8
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train research-backup/t5-base-squadshifts-nyt-qg
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_squadshiftsself-reported8.530
- ROUGE-L (Question Generation) on lmqg/qg_squadshiftsself-reported24.930
- METEOR (Question Generation) on lmqg/qg_squadshiftsself-reported25.210
- BERTScore (Question Generation) on lmqg/qg_squadshiftsself-reported92.680
- MoverScore (Question Generation) on lmqg/qg_squadshiftsself-reported64.700