Model Card of lmqg/mbart-large-cc25-esquad-qg-ae
This model is fine-tuned version of facebook/mbart-large-cc25 for question generation and answer extraction jointly on the lmqg/qg_esquad (dataset_name: default) via lmqg
.
Overview
- Language model: facebook/mbart-large-cc25
- Language: es
- Training data: lmqg/qg_esquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mbart-large-cc25-esquad-qg-ae")
# model prediction
question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-esquad-qg-ae")
# answer extraction
answer = pipe("generate question: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
# question generation
question = pipe("extract answers: <hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como.")
Evaluation
- Metric (Question Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 79.36 | default | lmqg/qg_esquad |
Bleu_1 | 22.05 | default | lmqg/qg_esquad |
Bleu_2 | 14.55 | default | lmqg/qg_esquad |
Bleu_3 | 10.34 | default | lmqg/qg_esquad |
Bleu_4 | 7.61 | default | lmqg/qg_esquad |
METEOR | 19.58 | default | lmqg/qg_esquad |
MoverScore | 56.05 | default | lmqg/qg_esquad |
ROUGE_L | 20.95 | default | lmqg/qg_esquad |
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 81.13 | default | lmqg/qg_esquad |
QAAlignedF1Score (MoverScore) | 54.86 | default | lmqg/qg_esquad |
QAAlignedPrecision (BERTScore) | 77.75 | default | lmqg/qg_esquad |
QAAlignedPrecision (MoverScore) | 52.82 | default | lmqg/qg_esquad |
QAAlignedRecall (BERTScore) | 84.91 | default | lmqg/qg_esquad |
QAAlignedRecall (MoverScore) | 57.16 | default | lmqg/qg_esquad |
- Metric (Answer Extraction): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 52.81 | default | lmqg/qg_esquad |
AnswerF1Score | 70.95 | default | lmqg/qg_esquad |
BERTScore | 86.7 | default | lmqg/qg_esquad |
Bleu_1 | 32.77 | default | lmqg/qg_esquad |
Bleu_2 | 28.12 | default | lmqg/qg_esquad |
Bleu_3 | 24.52 | default | lmqg/qg_esquad |
Bleu_4 | 21.5 | default | lmqg/qg_esquad |
METEOR | 40.42 | default | lmqg/qg_esquad |
MoverScore | 77.96 | default | lmqg/qg_esquad |
ROUGE_L | 46.66 | default | lmqg/qg_esquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: ['paragraph_answer', 'paragraph_sentence']
- output_types: ['question', 'answer']
- prefix_types: ['qg', 'ae']
- model: facebook/mbart-large-cc25
- max_length: 512
- max_length_output: 32
- epoch: 5
- batch: 2
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 32
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train research-backup/mbart-large-cc25-esquad-qg-ae
Evaluation results
- BLEU4 (Question Generation) on lmqg/qg_esquadself-reported7.610
- ROUGE-L (Question Generation) on lmqg/qg_esquadself-reported20.950
- METEOR (Question Generation) on lmqg/qg_esquadself-reported19.580
- BERTScore (Question Generation) on lmqg/qg_esquadself-reported79.360
- MoverScore (Question Generation) on lmqg/qg_esquadself-reported56.050
- QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquadself-reported81.130
- QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquadself-reported84.910
- QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquadself-reported77.750
- QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquadself-reported54.860
- QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquadself-reported57.160