File size: 4,971 Bytes
0537f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e8aef
0537f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: dit_base_binary_task
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit_base_binary_task

This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the davanstrien/leicester_loaded_annotations_binary dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0513
- Accuracy: 0.9873
- F1: 0.9600

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 0.87  | 5    | 0.6816          | 0.5      | 0.2476 |
| 0.7387        | 1.87  | 10   | 0.5142          | 0.8354   | 0.0    |
| 0.7387        | 2.87  | 15   | 0.4690          | 0.8354   | 0.0    |
| 0.4219        | 3.87  | 20   | 0.5460          | 0.8354   | 0.0    |
| 0.4219        | 4.87  | 25   | 0.4703          | 0.8354   | 0.0    |
| 0.3734        | 5.87  | 30   | 0.4371          | 0.8354   | 0.0    |
| 0.3734        | 6.87  | 35   | 0.4147          | 0.8354   | 0.0    |
| 0.3261        | 7.87  | 40   | 0.4272          | 0.8354   | 0.0    |
| 0.3261        | 8.87  | 45   | 0.4038          | 0.8354   | 0.0    |
| 0.3078        | 9.87  | 50   | 0.3418          | 0.8354   | 0.0    |
| 0.3078        | 10.87 | 55   | 0.3042          | 0.8354   | 0.0    |
| 0.2501        | 11.87 | 60   | 0.2799          | 0.8354   | 0.0    |
| 0.2501        | 12.87 | 65   | 0.1419          | 0.9367   | 0.7619 |
| 0.1987        | 13.87 | 70   | 0.1224          | 0.9494   | 0.8182 |
| 0.1987        | 14.87 | 75   | 0.0749          | 0.9747   | 0.9167 |
| 0.1391        | 15.87 | 80   | 0.0539          | 0.9810   | 0.9412 |
| 0.1391        | 16.87 | 85   | 0.0830          | 0.9873   | 0.9600 |
| 0.1085        | 17.87 | 90   | 0.0443          | 0.9873   | 0.9600 |
| 0.1085        | 18.87 | 95   | 0.0258          | 0.9937   | 0.9804 |
| 0.1039        | 19.87 | 100  | 0.1025          | 0.9684   | 0.8936 |
| 0.1039        | 20.87 | 105  | 0.1597          | 0.9684   | 0.8936 |
| 0.1217        | 21.87 | 110  | 0.0278          | 0.9937   | 0.9811 |
| 0.1217        | 22.87 | 115  | 0.0458          | 0.9873   | 0.9600 |
| 0.0609        | 23.87 | 120  | 0.0478          | 0.9937   | 0.9804 |
| 0.0609        | 24.87 | 125  | 0.0671          | 0.9747   | 0.9231 |
| 0.1031        | 25.87 | 130  | 0.0751          | 0.9873   | 0.9600 |
| 0.1031        | 26.87 | 135  | 0.1963          | 0.9557   | 0.8444 |
| 0.0601        | 27.87 | 140  | 0.0870          | 0.9747   | 0.9167 |
| 0.0601        | 28.87 | 145  | 0.0890          | 0.9747   | 0.9167 |
| 0.0799        | 29.87 | 150  | 0.1017          | 0.9747   | 0.9167 |
| 0.0799        | 30.87 | 155  | 0.0041          | 1.0      | 1.0    |
| 0.0441        | 31.87 | 160  | 0.0332          | 0.9873   | 0.9615 |
| 0.0441        | 32.87 | 165  | 0.0839          | 0.9747   | 0.9167 |
| 0.0757        | 33.87 | 170  | 0.0722          | 0.9873   | 0.9600 |
| 0.0757        | 34.87 | 175  | 0.0168          | 0.9937   | 0.9804 |
| 0.0555        | 35.87 | 180  | 0.0443          | 0.9937   | 0.9804 |
| 0.0555        | 36.87 | 185  | 0.0227          | 0.9873   | 0.9615 |
| 0.0336        | 37.87 | 190  | 0.0128          | 0.9937   | 0.9804 |
| 0.0336        | 38.87 | 195  | 0.0169          | 0.9937   | 0.9811 |
| 0.0405        | 39.87 | 200  | 0.0193          | 0.9937   | 0.9804 |
| 0.0405        | 40.87 | 205  | 0.1216          | 0.9810   | 0.9388 |
| 0.0578        | 41.87 | 210  | 0.0307          | 0.9937   | 0.9804 |
| 0.0578        | 42.87 | 215  | 0.0539          | 0.9873   | 0.9600 |
| 0.0338        | 43.87 | 220  | 0.0573          | 0.9937   | 0.9804 |
| 0.0338        | 44.87 | 225  | 0.0086          | 1.0      | 1.0    |
| 0.0417        | 45.87 | 230  | 0.0491          | 0.9873   | 0.9600 |
| 0.0417        | 46.87 | 235  | 0.0089          | 1.0      | 1.0    |
| 0.0538        | 47.87 | 240  | 0.0846          | 0.9810   | 0.9388 |
| 0.0538        | 48.87 | 245  | 0.0452          | 0.9810   | 0.9388 |
| 0.0364        | 49.87 | 250  | 0.0513          | 0.9873   | 0.9600 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.7.1
- Tokenizers 0.13.1