update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: dit_base_binary_task
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# dit_base_binary_task
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0513
|
20 |
+
- Accuracy: 0.9873
|
21 |
+
- F1: 0.9600
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 64
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 50
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| No log | 0.87 | 5 | 0.6816 | 0.5 | 0.2476 |
|
56 |
+
| 0.7387 | 1.87 | 10 | 0.5142 | 0.8354 | 0.0 |
|
57 |
+
| 0.7387 | 2.87 | 15 | 0.4690 | 0.8354 | 0.0 |
|
58 |
+
| 0.4219 | 3.87 | 20 | 0.5460 | 0.8354 | 0.0 |
|
59 |
+
| 0.4219 | 4.87 | 25 | 0.4703 | 0.8354 | 0.0 |
|
60 |
+
| 0.3734 | 5.87 | 30 | 0.4371 | 0.8354 | 0.0 |
|
61 |
+
| 0.3734 | 6.87 | 35 | 0.4147 | 0.8354 | 0.0 |
|
62 |
+
| 0.3261 | 7.87 | 40 | 0.4272 | 0.8354 | 0.0 |
|
63 |
+
| 0.3261 | 8.87 | 45 | 0.4038 | 0.8354 | 0.0 |
|
64 |
+
| 0.3078 | 9.87 | 50 | 0.3418 | 0.8354 | 0.0 |
|
65 |
+
| 0.3078 | 10.87 | 55 | 0.3042 | 0.8354 | 0.0 |
|
66 |
+
| 0.2501 | 11.87 | 60 | 0.2799 | 0.8354 | 0.0 |
|
67 |
+
| 0.2501 | 12.87 | 65 | 0.1419 | 0.9367 | 0.7619 |
|
68 |
+
| 0.1987 | 13.87 | 70 | 0.1224 | 0.9494 | 0.8182 |
|
69 |
+
| 0.1987 | 14.87 | 75 | 0.0749 | 0.9747 | 0.9167 |
|
70 |
+
| 0.1391 | 15.87 | 80 | 0.0539 | 0.9810 | 0.9412 |
|
71 |
+
| 0.1391 | 16.87 | 85 | 0.0830 | 0.9873 | 0.9600 |
|
72 |
+
| 0.1085 | 17.87 | 90 | 0.0443 | 0.9873 | 0.9600 |
|
73 |
+
| 0.1085 | 18.87 | 95 | 0.0258 | 0.9937 | 0.9804 |
|
74 |
+
| 0.1039 | 19.87 | 100 | 0.1025 | 0.9684 | 0.8936 |
|
75 |
+
| 0.1039 | 20.87 | 105 | 0.1597 | 0.9684 | 0.8936 |
|
76 |
+
| 0.1217 | 21.87 | 110 | 0.0278 | 0.9937 | 0.9811 |
|
77 |
+
| 0.1217 | 22.87 | 115 | 0.0458 | 0.9873 | 0.9600 |
|
78 |
+
| 0.0609 | 23.87 | 120 | 0.0478 | 0.9937 | 0.9804 |
|
79 |
+
| 0.0609 | 24.87 | 125 | 0.0671 | 0.9747 | 0.9231 |
|
80 |
+
| 0.1031 | 25.87 | 130 | 0.0751 | 0.9873 | 0.9600 |
|
81 |
+
| 0.1031 | 26.87 | 135 | 0.1963 | 0.9557 | 0.8444 |
|
82 |
+
| 0.0601 | 27.87 | 140 | 0.0870 | 0.9747 | 0.9167 |
|
83 |
+
| 0.0601 | 28.87 | 145 | 0.0890 | 0.9747 | 0.9167 |
|
84 |
+
| 0.0799 | 29.87 | 150 | 0.1017 | 0.9747 | 0.9167 |
|
85 |
+
| 0.0799 | 30.87 | 155 | 0.0041 | 1.0 | 1.0 |
|
86 |
+
| 0.0441 | 31.87 | 160 | 0.0332 | 0.9873 | 0.9615 |
|
87 |
+
| 0.0441 | 32.87 | 165 | 0.0839 | 0.9747 | 0.9167 |
|
88 |
+
| 0.0757 | 33.87 | 170 | 0.0722 | 0.9873 | 0.9600 |
|
89 |
+
| 0.0757 | 34.87 | 175 | 0.0168 | 0.9937 | 0.9804 |
|
90 |
+
| 0.0555 | 35.87 | 180 | 0.0443 | 0.9937 | 0.9804 |
|
91 |
+
| 0.0555 | 36.87 | 185 | 0.0227 | 0.9873 | 0.9615 |
|
92 |
+
| 0.0336 | 37.87 | 190 | 0.0128 | 0.9937 | 0.9804 |
|
93 |
+
| 0.0336 | 38.87 | 195 | 0.0169 | 0.9937 | 0.9811 |
|
94 |
+
| 0.0405 | 39.87 | 200 | 0.0193 | 0.9937 | 0.9804 |
|
95 |
+
| 0.0405 | 40.87 | 205 | 0.1216 | 0.9810 | 0.9388 |
|
96 |
+
| 0.0578 | 41.87 | 210 | 0.0307 | 0.9937 | 0.9804 |
|
97 |
+
| 0.0578 | 42.87 | 215 | 0.0539 | 0.9873 | 0.9600 |
|
98 |
+
| 0.0338 | 43.87 | 220 | 0.0573 | 0.9937 | 0.9804 |
|
99 |
+
| 0.0338 | 44.87 | 225 | 0.0086 | 1.0 | 1.0 |
|
100 |
+
| 0.0417 | 45.87 | 230 | 0.0491 | 0.9873 | 0.9600 |
|
101 |
+
| 0.0417 | 46.87 | 235 | 0.0089 | 1.0 | 1.0 |
|
102 |
+
| 0.0538 | 47.87 | 240 | 0.0846 | 0.9810 | 0.9388 |
|
103 |
+
| 0.0538 | 48.87 | 245 | 0.0452 | 0.9810 | 0.9388 |
|
104 |
+
| 0.0364 | 49.87 | 250 | 0.0513 | 0.9873 | 0.9600 |
|
105 |
+
|
106 |
+
|
107 |
+
### Framework versions
|
108 |
+
|
109 |
+
- Transformers 4.25.1
|
110 |
+
- Pytorch 1.12.1
|
111 |
+
- Datasets 2.7.1
|
112 |
+
- Tokenizers 0.13.1
|