See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Henrychur/MMed-Llama-3-8B-EnIns
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9f7e08877e4e94ba_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9f7e08877e4e94ba_train_data.json
type:
field_input: context
field_instruction: question
field_output: final_decision
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: sn56/af6dd40b-32e1-43b1-adfd-8ce14d65d738
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 74GiB
max_steps: 75
micro_batch_size: 2
mlflow_experiment_name: /tmp/9f7e08877e4e94ba_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2048
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: af6dd40b-32e1-43b1-adfd-8ce14d65d738
wandb_project: god
wandb_run: 22es
wandb_runid: af6dd40b-32e1-43b1-adfd-8ce14d65d738
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: true
af6dd40b-32e1-43b1-adfd-8ce14d65d738
This model is a fine-tuned version of Henrychur/MMed-Llama-3-8B-EnIns on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0261
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- training_steps: 75
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.8509 | 0.0003 | 1 | 12.3188 |
0.0476 | 0.0080 | 25 | 0.0345 |
0.0004 | 0.0160 | 50 | 0.0329 |
0.0769 | 0.0239 | 75 | 0.0261 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for rayonlabs/af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-db66de05-a16d-469a-8dbe-9b83c47be48a
Base model
Henrychur/MMed-Llama-3-8B
Finetuned
Henrychur/MMed-Llama-3-8B-EnIns