Roberta-Base fine-tuned on PubMed Abstract
We limit the training textual data to the following MeSH
- All the child MeSH of
Biomarkers, Tumor(D014408)
, including things likeCarcinoembryonic Antigen(D002272)
- All the child MeSH of
Carcinoma(D002277)
, including things like all kinds of carcinoma: likeCarcinoma, Lewis Lung(D018827)
etc. around 80 kinds of carcinoma - All the child MeSH of
Clinical Trial(D016439)
- The training text file amounts to 531Mb
Training
- Trained on language modeling task, with
mlm_probability=0.15
, on 2 Tesla V100 32Gtraining_args = TrainingArguments( output_dir=config.save, #select model path for checkpoint overwrite_output_dir=True, num_train_epochs=3, per_device_train_batch_size=30, per_device_eval_batch_size=60, evaluation_strategy= 'steps', save_total_limit=2, eval_steps=250, metric_for_best_model='eval_loss', greater_is_better=False, load_best_model_at_end =True, prediction_loss_only=True, report_to = "none")
- Downloads last month
- 46