ratish/DBERT_CleanDesc_MAKE_v11

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1889
  • Validation Loss: 1.0498
  • Train Accuracy: 0.8
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4620, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
2.1852 2.0907 0.375 0
1.7165 1.7453 0.525 1
1.2878 1.4632 0.55 2
0.9851 1.2769 0.575 3
0.7653 1.1689 0.675 4
0.6014 1.1163 0.65 5
0.4997 1.0490 0.7 6
0.4344 0.9967 0.7 7
0.3263 0.9887 0.75 8
0.2837 1.0332 0.775 9
0.2291 1.0496 0.775 10
0.1994 1.0560 0.775 11
0.1736 1.1081 0.775 12
0.1589 1.0679 0.8 13
0.1889 1.0498 0.8 14

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
18
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.