ratish/DBERT_CleanDesc_COLLISION_v10.2

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.5332
  • Validation Loss: 1.5183
  • Train Accuracy: 0.5641
  • Epoch: 8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3050, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
1.6309 1.7112 0.3077 0
1.4582 1.6871 0.3077 1
1.3074 1.5190 0.5128 2
1.1524 1.4848 0.5385 3
0.9636 1.4063 0.5128 4
0.8722 1.4418 0.5897 5
0.7233 1.4191 0.5897 6
0.6482 1.4759 0.5897 7
0.5332 1.5183 0.5641 8

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
70
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.