ratish/DBERT_CleanDesc_COLLISION_v10.2
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.5332
- Validation Loss: 1.5183
- Train Accuracy: 0.5641
- Epoch: 8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3050, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
1.6309 | 1.7112 | 0.3077 | 0 |
1.4582 | 1.6871 | 0.3077 | 1 |
1.3074 | 1.5190 | 0.5128 | 2 |
1.1524 | 1.4848 | 0.5385 | 3 |
0.9636 | 1.4063 | 0.5128 | 4 |
0.8722 | 1.4418 | 0.5897 | 5 |
0.7233 | 1.4191 | 0.5897 | 6 |
0.6482 | 1.4759 | 0.5897 | 7 |
0.5332 | 1.5183 | 0.5641 | 8 |
Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 70
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.