Edit model card

This is a fine-tuned version of the bert-medium-amharic model on the amharic-named-entity-recognition dataset and is ready to use for named entity recognition (NER).

It achieves the following results on the evaluation set:

  • Precision: 0.65
  • Recall: 0.73
  • F1: 0.69

How to use

You can use this model directly with a pipeline for token classification:

from transformers import pipeline
checkpoint = "rasyosef/bert-medium-amharic-finetuned-ner"
token_classifier = pipeline("token-classification", model=checkpoint, aggregation_strategy="simple")
token_classifier("አትሌት ኃይሌ ገ/ሥላሴ ኒውዮርክ ውስጥ በሚደረገው የተባበሩት መንግሥታት ድርጅት ልዩ የሰላም ስብሰባ ላይ እንዲገኝ ተጋበዘ።")

Output:

[{'entity_group': 'TTL',
  'score': 0.9841112,
  'word': 'አትሌት',
  'start': 0,
  'end': 4},
 {'entity_group': 'PER',
  'score': 0.99379075,
  'word': 'ኃይሌ ገ / ሥላሴ',
  'start': 5,
  'end': 14},
 {'entity_group': 'LOC',
  'score': 0.8818362,
  'word': 'ኒውዮርክ',
  'start': 15,
  'end': 20},
 {'entity_group': 'ORG',
  'score': 0.99056435,
  'word': 'የተባበሩት መንግሥታት ድርጅት',
  'start': 32,
  'end': 50}]

Code

https://github.com/rasyosef/amharic-named-entity-recognition

Downloads last month
7
Safetensors
Model size
40.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train rasyosef/bert-medium-amharic-finetuned-ner

Collection including rasyosef/bert-medium-amharic-finetuned-ner