Yolo-NAS: Optimized for Mobile Deployment
Real-time object detection optimized for mobile and edge
YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-NAS found here.
More details on model performance across various devices, can be found here.
Model Details
- Model Type: Object detection
- Model Stats:
- Model checkpoint: YoloNAS Small
- Input resolution: 640x640
- Number of parameters: 12.2M
- Model size: 46.6 MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 9.015 ms | 0 - 19 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 9.472 ms | 5 - 7 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.913 ms | 0 - 77 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 6.097 ms | 0 - 41 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 6.499 ms | 5 - 24 MB | FP16 | NPU | -- |
Yolo-NAS | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.28 ms | 5 - 55 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 6.35 ms | 0 - 37 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 5.201 ms | 5 - 37 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 5.276 ms | 5 - 43 MB | FP16 | NPU | -- |
Yolo-NAS | SA7255P ADP | SA7255P | TFLITE | 222.638 ms | 0 - 34 MB | FP16 | NPU | -- |
Yolo-NAS | SA7255P ADP | SA7255P | QNN | 223.59 ms | 0 - 8 MB | FP16 | NPU | -- |
Yolo-NAS | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 8.961 ms | 0 - 26 MB | FP16 | NPU | -- |
Yolo-NAS | SA8255 (Proxy) | SA8255P Proxy | QNN | 9.374 ms | 6 - 9 MB | FP16 | NPU | -- |
Yolo-NAS | SA8295P ADP | SA8295P | TFLITE | 14.009 ms | 0 - 32 MB | FP16 | NPU | -- |
Yolo-NAS | SA8295P ADP | SA8295P | QNN | 14.306 ms | 0 - 10 MB | FP16 | NPU | -- |
Yolo-NAS | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 8.971 ms | 0 - 25 MB | FP16 | NPU | -- |
Yolo-NAS | SA8650 (Proxy) | SA8650P Proxy | QNN | 9.425 ms | 6 - 8 MB | FP16 | NPU | -- |
Yolo-NAS | SA8775P ADP | SA8775P | TFLITE | 15.636 ms | 0 - 32 MB | FP16 | NPU | -- |
Yolo-NAS | SA8775P ADP | SA8775P | QNN | 16.355 ms | 1 - 7 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 222.638 ms | 0 - 34 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 223.59 ms | 0 - 8 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 8.952 ms | 0 - 17 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 9.446 ms | 5 - 8 MB | FP16 | NPU | -- |
Yolo-NAS | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 15.636 ms | 0 - 32 MB | FP16 | NPU | -- |
Yolo-NAS | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 16.355 ms | 1 - 7 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 12.108 ms | 0 - 34 MB | FP16 | NPU | -- |
Yolo-NAS | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 12.867 ms | 5 - 41 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 10.339 ms | 5 - 5 MB | FP16 | NPU | -- |
Yolo-NAS | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.568 ms | 22 - 22 MB | FP16 | NPU | -- |
License
- The license for the original implementation of Yolo-NAS can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- A Next-Generation, Object Detection Foundational Model generated by Deci’s Neural Architecture Search Technology
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support object-detection models for pytorch library.