YOLOv11-Detection-Quantized: Optimized for Mobile Deployment

Quantized real-time object detection optimized for mobile and edge by Ultralytics

Ultralytics YOLOv11 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.

This model is an implementation of YOLOv11-Detection-Quantized found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YOLOv11-N
    • Input resolution: 640x640
    • Number of parameters: 2.64M
    • Model size: 2.83 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
YOLOv11-Detection-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 1.833 ms 0 - 12 MB INT8 NPU --
YOLOv11-Detection-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 1.822 ms 1 - 4 MB INT8 NPU --
YOLOv11-Detection-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 10.152 ms 0 - 20 MB INT8 NPU --
YOLOv11-Detection-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 1.202 ms 0 - 34 MB INT8 NPU --
YOLOv11-Detection-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 1.223 ms 1 - 20 MB INT8 NPU --
YOLOv11-Detection-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 7.445 ms 1 - 64 MB INT8 NPU --
YOLOv11-Detection-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.924 ms 0 - 33 MB INT8 NPU --
YOLOv11-Detection-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 1.24 ms 1 - 30 MB INT8 NPU --
YOLOv11-Detection-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 7.109 ms 2 - 63 MB INT8 NPU --
YOLOv11-Detection-Quantized SA7255P ADP SA7255P TFLITE 9.079 ms 0 - 22 MB INT8 NPU --
YOLOv11-Detection-Quantized SA7255P ADP SA7255P QNN 8.966 ms 1 - 9 MB INT8 NPU --
YOLOv11-Detection-Quantized SA8255 (Proxy) SA8255P Proxy TFLITE 1.832 ms 0 - 13 MB INT8 NPU --
YOLOv11-Detection-Quantized SA8255 (Proxy) SA8255P Proxy QNN 1.817 ms 1 - 4 MB INT8 NPU --
YOLOv11-Detection-Quantized SA8295P ADP SA8295P TFLITE 2.662 ms 0 - 26 MB INT8 NPU --
YOLOv11-Detection-Quantized SA8295P ADP SA8295P QNN 2.607 ms 1 - 16 MB INT8 NPU --
YOLOv11-Detection-Quantized SA8650 (Proxy) SA8650P Proxy TFLITE 1.819 ms 0 - 10 MB INT8 NPU --
YOLOv11-Detection-Quantized SA8650 (Proxy) SA8650P Proxy QNN 1.823 ms 1 - 4 MB INT8 NPU --
YOLOv11-Detection-Quantized SA8775P ADP SA8775P TFLITE 2.715 ms 0 - 22 MB INT8 NPU --
YOLOv11-Detection-Quantized SA8775P ADP SA8775P QNN 2.688 ms 1 - 11 MB INT8 NPU --
YOLOv11-Detection-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy TFLITE 4.081 ms 0 - 28 MB INT8 NPU --
YOLOv11-Detection-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy QNN 5.937 ms 1 - 13 MB INT8 NPU --
YOLOv11-Detection-Quantized RB5 (Proxy) QCS8250 Proxy TFLITE 66.03 ms 1 - 11 MB INT8 NPU --
YOLOv11-Detection-Quantized QCS8275 (Proxy) QCS8275 Proxy TFLITE 9.079 ms 0 - 22 MB INT8 NPU --
YOLOv11-Detection-Quantized QCS8275 (Proxy) QCS8275 Proxy QNN 8.966 ms 1 - 9 MB INT8 NPU --
YOLOv11-Detection-Quantized QCS8550 (Proxy) QCS8550 Proxy TFLITE 1.821 ms 0 - 8 MB INT8 NPU --
YOLOv11-Detection-Quantized QCS8550 (Proxy) QCS8550 Proxy QNN 1.804 ms 1 - 4 MB INT8 NPU --
YOLOv11-Detection-Quantized QCS9075 (Proxy) QCS9075 Proxy TFLITE 2.715 ms 0 - 22 MB INT8 NPU --
YOLOv11-Detection-Quantized QCS9075 (Proxy) QCS9075 Proxy QNN 2.688 ms 1 - 11 MB INT8 NPU --
YOLOv11-Detection-Quantized QCS8450 (Proxy) QCS8450 Proxy TFLITE 1.98 ms 0 - 30 MB INT8 NPU --
YOLOv11-Detection-Quantized QCS8450 (Proxy) QCS8450 Proxy QNN 2.242 ms 1 - 30 MB INT8 NPU --
YOLOv11-Detection-Quantized Snapdragon X Elite CRD Snapdragon® X Elite QNN 2.097 ms 1 - 1 MB INT8 NPU --
YOLOv11-Detection-Quantized Snapdragon X Elite CRD Snapdragon® X Elite ONNX 10.967 ms 2 - 2 MB INT8 NPU --

License

  • The license for the original implementation of YOLOv11-Detection-Quantized can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support object-detection models for pytorch library.