MediaPipe-Face-Detection: Optimized for Mobile Deployment

Detect faces and locate facial features in real-time video and image streams

Designed for sub-millisecond processing, this model predicts bounding boxes and pose skeletons (left eye, right eye, nose tip, mouth, left eye tragion, and right eye tragion) of faces in an image.

This model is an implementation of MediaPipe-Face-Detection found here.

This repository provides scripts to run MediaPipe-Face-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Input resolution: 256x256
    • Number of parameters (MediaPipeFaceDetector): 135K
    • Model size (MediaPipeFaceDetector): 565 KB
    • Number of parameters (MediaPipeFaceLandmarkDetector): 603K
    • Model size (MediaPipeFaceLandmarkDetector): 2.34 MB
    • Number of output classes: 6
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
FaceDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 0.551 ms 0 - 6 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.537 ms 1 - 3 MB FP16 NPU MediaPipe-Face-Detection.so
FaceDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 0.838 ms 0 - 7 MB FP16 NPU MediaPipe-Face-Detection.onnx
FaceDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.403 ms 0 - 29 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.383 ms 1 - 21 MB FP16 NPU MediaPipe-Face-Detection.so
FaceDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 0.579 ms 0 - 26 MB FP16 NPU MediaPipe-Face-Detection.onnx
FaceDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.344 ms 0 - 24 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.465 ms 1 - 21 MB FP16 NPU Use Export Script
FaceDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 0.593 ms 1 - 21 MB FP16 NPU MediaPipe-Face-Detection.onnx
FaceDetector SA7255P ADP SA7255P TFLITE 18.69 ms 0 - 14 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector SA7255P ADP SA7255P QNN 18.639 ms 1 - 9 MB FP16 NPU Use Export Script
FaceDetector SA8255 (Proxy) SA8255P Proxy TFLITE 0.545 ms 0 - 4 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector SA8255 (Proxy) SA8255P Proxy QNN 0.533 ms 1 - 3 MB FP16 NPU Use Export Script
FaceDetector SA8295P ADP SA8295P TFLITE 1.154 ms 0 - 19 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector SA8295P ADP SA8295P QNN 1.057 ms 0 - 18 MB FP16 NPU Use Export Script
FaceDetector SA8650 (Proxy) SA8650P Proxy TFLITE 0.551 ms 0 - 6 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector SA8650 (Proxy) SA8650P Proxy QNN 0.528 ms 0 - 2 MB FP16 NPU Use Export Script
FaceDetector SA8775P ADP SA8775P TFLITE 1.25 ms 0 - 14 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector SA8775P ADP SA8775P QNN 1.205 ms 0 - 10 MB FP16 NPU Use Export Script
FaceDetector QCS8275 (Proxy) QCS8275 Proxy TFLITE 18.69 ms 0 - 14 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector QCS8275 (Proxy) QCS8275 Proxy QNN 18.639 ms 1 - 9 MB FP16 NPU Use Export Script
FaceDetector QCS8550 (Proxy) QCS8550 Proxy TFLITE 0.546 ms 0 - 6 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector QCS8550 (Proxy) QCS8550 Proxy QNN 0.543 ms 1 - 5 MB FP16 NPU Use Export Script
FaceDetector QCS9075 (Proxy) QCS9075 Proxy TFLITE 1.25 ms 0 - 14 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector QCS9075 (Proxy) QCS9075 Proxy QNN 1.205 ms 0 - 10 MB FP16 NPU Use Export Script
FaceDetector QCS8450 (Proxy) QCS8450 Proxy TFLITE 0.827 ms 0 - 21 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceDetector QCS8450 (Proxy) QCS8450 Proxy QNN 0.868 ms 1 - 28 MB FP16 NPU Use Export Script
FaceDetector Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.669 ms 1 - 1 MB FP16 NPU Use Export Script
FaceDetector Snapdragon X Elite CRD Snapdragon® X Elite ONNX 0.845 ms 2 - 2 MB FP16 NPU MediaPipe-Face-Detection.onnx
FaceLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 0.19 ms 0 - 8 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.216 ms 0 - 2 MB FP16 NPU MediaPipe-Face-Detection.so
FaceLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 0.373 ms 0 - 8 MB FP16 NPU MediaPipe-Face-Detection.onnx
FaceLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.146 ms 0 - 26 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.156 ms 0 - 21 MB FP16 NPU MediaPipe-Face-Detection.so
FaceLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 0.266 ms 0 - 21 MB FP16 NPU MediaPipe-Face-Detection.onnx
FaceLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.127 ms 0 - 19 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.17 ms 0 - 15 MB FP16 NPU Use Export Script
FaceLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 0.293 ms 0 - 20 MB FP16 NPU MediaPipe-Face-Detection.onnx
FaceLandmarkDetector SA7255P ADP SA7255P TFLITE 3.548 ms 0 - 13 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector SA7255P ADP SA7255P QNN 3.543 ms 0 - 10 MB FP16 NPU Use Export Script
FaceLandmarkDetector SA8255 (Proxy) SA8255P Proxy TFLITE 0.205 ms 0 - 8 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector SA8255 (Proxy) SA8255P Proxy QNN 0.222 ms 0 - 4 MB FP16 NPU Use Export Script
FaceLandmarkDetector SA8295P ADP SA8295P TFLITE 0.569 ms 0 - 18 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector SA8295P ADP SA8295P QNN 0.613 ms 0 - 18 MB FP16 NPU Use Export Script
FaceLandmarkDetector SA8650 (Proxy) SA8650P Proxy TFLITE 0.198 ms 0 - 7 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector SA8650 (Proxy) SA8650P Proxy QNN 0.217 ms 0 - 2 MB FP16 NPU Use Export Script
FaceLandmarkDetector SA8775P ADP SA8775P TFLITE 0.501 ms 0 - 12 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector SA8775P ADP SA8775P QNN 0.519 ms 0 - 10 MB FP16 NPU Use Export Script
FaceLandmarkDetector QCS8275 (Proxy) QCS8275 Proxy TFLITE 3.548 ms 0 - 13 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector QCS8275 (Proxy) QCS8275 Proxy QNN 3.543 ms 0 - 10 MB FP16 NPU Use Export Script
FaceLandmarkDetector QCS8550 (Proxy) QCS8550 Proxy TFLITE 0.19 ms 0 - 8 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector QCS8550 (Proxy) QCS8550 Proxy QNN 0.219 ms 0 - 4 MB FP16 NPU Use Export Script
FaceLandmarkDetector QCS9075 (Proxy) QCS9075 Proxy TFLITE 0.501 ms 0 - 12 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector QCS9075 (Proxy) QCS9075 Proxy QNN 0.519 ms 0 - 10 MB FP16 NPU Use Export Script
FaceLandmarkDetector QCS8450 (Proxy) QCS8450 Proxy TFLITE 0.348 ms 0 - 26 MB FP16 NPU MediaPipe-Face-Detection.tflite
FaceLandmarkDetector QCS8450 (Proxy) QCS8450 Proxy QNN 0.366 ms 0 - 21 MB FP16 NPU Use Export Script
FaceLandmarkDetector Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.309 ms 0 - 0 MB FP16 NPU Use Export Script
FaceLandmarkDetector Snapdragon X Elite CRD Snapdragon® X Elite ONNX 0.36 ms 1 - 1 MB FP16 NPU MediaPipe-Face-Detection.onnx

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.mediapipe_face.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.mediapipe_face.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mediapipe_face.export
Profiling Results
------------------------------------------------------------
FaceDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.6                    
Estimated peak memory usage (MB): [0, 6]                 
Total # Ops                     : 111                    
Compute Unit(s)                 : NPU (111 ops)          

------------------------------------------------------------
FaceLandmarkDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.2                    
Estimated peak memory usage (MB): [0, 8]                 
Total # Ops                     : 100                    
Compute Unit(s)                 : NPU (100 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.mediapipe_face import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on MediaPipe-Face-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of MediaPipe-Face-Detection can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support