Wav2Vec2-Large-XLSR-53-Japanese
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Japanese using the Common Voice, and JSUT dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the Japanese test data of Common Voice.
!pip install torchaudio
!pip install datasets transformers
!pip install jiwer
!pip install mecab-python3
!pip install unidic-lite
!python -m unidic download
!pip install jaconv
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import MeCab
from jaconv import kata2hira
from typing import List
# Japanese preprocessing
tagger = MeCab.Tagger("-Owakati")
chars_to_ignore_regex = '[\ใ\ใ\ใ\ใ\,\?\.\!\-\;\:\"\โ\%\โ\โ\๏ฟฝ]'
def text2kata(text):
node = tagger.parseToNode(text)
word_class = []
while node:
word = node.surface
wclass = node.feature.split(',')
if wclass[0] != u'BOS/EOS':
if len(wclass) <= 6:
word_class.append((word))
elif wclass[6] == None:
word_class.append((word))
else:
word_class.append((wclass[6]))
node = node.next
return ' '.join(word_class)
def hiragana(text):
return kata2hira(text2kata(text))
test_dataset = load_dataset("common_voice", "ja", split="test")
wer = load_metric("wer")
resampler = torchaudio.transforms.Resample(48_000, 16_000) # JSUT is already 16kHz
# resampler = torchaudio.transforms.Resample(16_000, 16_000) # JSUT is already 16kHz
processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53")
model.to("cuda")
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = hiragana(batch["sentence"]).strip()
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
def cer_compute(predictions: List[str], references: List[str]):
p = [" ".join(list(" " + pred.replace(" ", ""))).strip() for pred in predictions]
r = [" ".join(list(" " + ref.replace(" ", ""))).strip() for ref in references]
return wer.compute(predictions=p, references=r)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {:2f}".format(100 * cer_compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 51.72 %
Training
The privately collected JSUT Japanese dataset was used for training.
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train qqpann/w2v_hf_jsut_xlsr53
Evaluation results
- Test WER on Common Voice jaself-reported51.720
- Test CER on Common Voice jaself-reported24.890