Wav2Vec2-Large-XLSR-53-Japanese

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Japanese using the Common Voice, and JSUT dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Japanese test data of Common Voice.

!pip install torchaudio
!pip install datasets transformers
!pip install jiwer
!pip install mecab-python3
!pip install unidic-lite
!python -m unidic download
!pip install jaconv

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import MeCab
from jaconv import kata2hira
from typing import List

# Japanese preprocessing
tagger = MeCab.Tagger("-Owakati")
chars_to_ignore_regex = '[\。\、\「\」\,\?\.\!\-\;\:\"\“\%\‘\”\�]'

def text2kata(text):
    node = tagger.parseToNode(text)
    word_class = []
    while node:
        word = node.surface
        wclass = node.feature.split(',')
        if wclass[0] != u'BOS/EOS':
            if len(wclass) <= 6:
                word_class.append((word))
            elif wclass[6] == None:
                word_class.append((word))
            else:
                word_class.append((wclass[6]))
        node = node.next
    return ' '.join(word_class)

def hiragana(text):
    return kata2hira(text2kata(text))

test_dataset = load_dataset("common_voice", "ja", split="test")
wer = load_metric("wer")
resampler = torchaudio.transforms.Resample(48_000, 16_000) # JSUT is already 16kHz
# resampler = torchaudio.transforms.Resample(16_000, 16_000) # JSUT is already 16kHz

processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53")
model.to("cuda")


# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = hiragana(batch["sentence"]).strip()
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch


test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

def cer_compute(predictions: List[str], references: List[str]):
    p = [" ".join(list(" " + pred.replace(" ", ""))).strip() for pred in predictions]
    r = [" ".join(list(" " + ref.replace(" ", ""))).strip() for ref in references]
    return wer.compute(predictions=p, references=r)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {:2f}".format(100 * cer_compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 51.72 %

Training

The privately collected JSUT Japanese dataset was used for training.

Downloads last month
44
Hosted inference API
Automatic Speech Recognition
or
This model can be loaded on the Inference API on-demand.
Evaluation results