File size: 8,074 Bytes
b1fbc72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import numpy as np
from queue import Queue
from typing import Tuple, List, Union, Iterable
from transformers.utils import logging, add_start_docstrings
from transformers.generation.logits_process import LogitsProcessor, LOGITS_PROCESSOR_INPUTS_DOCSTRING, LogitsProcessorList


def make_context(model, tokenizer, 
                 messages: List[dict], 
                 system: str = "You are a helpful assistant.",
                 max_new_tokens: int=0, 
                ):
    
    max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
    max_input_length = model.config.model_max_length - max_new_tokens

    im_start_id = [tokenizer.im_start_id]
    im_end_id = [tokenizer.im_end_id]
    nl_tokens = tokenizer.encode("\n")

    def _tokenize_str(role, content):
        return tokenizer.encode(role, allowed_special=set()) + nl_tokens + tokenizer.encode(content, allowed_special=set())
    
    def _parse_messages(messages):
        system, query, history = "", "", []
        ## system
        if messages[0]["role"] == "system":
            system = messages[0]["content"]
            messages = messages[1:]
        ## query
        assert messages[-1]["role"] == "user"
        query = messages[-1]["content"]
        messages = messages[:-1]
        ## history
        assert len(messages) % 2 == 0
        for i in range(0, len(messages), 2):
            assert messages[i]["role"] == "user" and messages[i+1]["role"] == "assistant"
            history.append([messages[i]["content"], messages[i+1]["content"]])

        return system, query, history
    
    _system, query, history = _parse_messages(messages)

    ## system
    system_text = _system if _system != "" else system
    system_tokens = []
    if system_text:
        system_tokens = im_start_id +  _tokenize_str("system", system_text) + im_end_id + nl_tokens
    
    ## query
    query_tokens = im_start_id + _tokenize_str("user", query) + im_end_id + nl_tokens
    ## final assistant
    final_tokens = im_start_id + tokenizer.encode("assistant", allowed_special=set()) + nl_tokens
    
    ## max_history_tokens
    max_history_length = max_input_length - len(system_tokens) - len(query_tokens) - len(final_tokens)
    
    ## history
    context_tokens = []
    for turn_query, turn_response in reversed(history):
        ## query tokens
        history_query_tokens = im_start_id + _tokenize_str("user", turn_query) + im_end_id + nl_tokens
        ## answer tokens
        histroy_response_tokens = im_start_id + _tokenize_str("assistant", turn_response)  + im_end_id + nl_tokens
        ## this round tokens
        next_context_tokens = history_query_tokens + histroy_response_tokens
        ## concat
        current_context_size = len(next_context_tokens) + len(context_tokens)
        if current_context_size < max_history_length:
            context_tokens = next_context_tokens + context_tokens
        else:
            break
    input_tokens = system_tokens + context_tokens + query_tokens + final_tokens

    return torch.LongTensor([input_tokens]).to(model.device)


class TextIterStreamer:
    def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
        self.tokenizer = tokenizer
        self.skip_prompt = skip_prompt
        self.skip_special_tokens = skip_special_tokens
        self.tokens = []
        self.text_queue = Queue()
        self.next_tokens_are_prompt = True

    def put(self, value):
        if self.skip_prompt and self.next_tokens_are_prompt:
            self.next_tokens_are_prompt = False
        else:
            if len(value.shape) > 1:
                value = value[0]
            self.tokens.extend(value.tolist())
            self.text_queue.put(
                self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens, errors='ignore'))

    def end(self):
        self.text_queue.put(None)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.text_queue.get()
        if value is None:
            raise StopIteration()
        else:
            return value


class OutputRepetitionPenaltyLogitsProcessor(LogitsProcessor):
    r"""
    [`OutputLogitsProcessor`] that prevents the repetition of previous tokens through a penalty. This penalty is applied at
    most once per token. Note that, for decoder-only models like most LLMs, the considered tokens include the prompt.

    In the original [paper](https://arxiv.org/pdf/1909.05858.pdf), the authors suggest the use of a penalty of around
    1.2 to achieve a good balance between truthful generation and lack of repetition. To penalize and reduce
    repetition, use `penalty` values above 1.0, where a higher value penalizes more strongly. To reward and encourage
    repetition, use `penalty` values between 0.0 and 1.0, where a lower value rewards more strongly.

    Args:
        penalty (`float`):
            The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 penalizes previously generated
            tokens. Between 0.0 and 1.0 rewards previously generated tokens.
    """

    def __init__(self, input_length: int, 
                    presence_penalties: float = 1.0,
                    frequency_penalties: float = 0,
                    repetition_penalties: float = 0):
        if not (repetition_penalties > 0):
            raise ValueError(f"`repetition_penalties` has to be a strictly positive float, but is {repetition_penalties}")
        if not ( (frequency_penalties >= -2) and (frequency_penalties <= 2) ):
            raise ValueError(f"`frequency_penalties` has to be [-2, 2], but is {frequency_penalties}")
        if not ( (presence_penalties >= -2) and (presence_penalties <= 2) ):
            raise ValueError(f"`presence_penalties` has to be [-2, 2], but is {presence_penalties}")

        self.repetition_penalties = repetition_penalties
        self.frequency_penalties = frequency_penalties
        self.presence_penalties = presence_penalties
        self.input_length = input_length

    def _get_bin_counts_and_mask(
        self,
        tokens: torch.Tensor,
        vocab_size: int,
        num_seqs: int,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Compute the bin counts for the tokens.
        # vocab_size + 1 for padding.
        bin_counts = torch.zeros((num_seqs, vocab_size + 1),
                                dtype=torch.long,
                                device=tokens.device)
        bin_counts.scatter_add_(1, tokens, torch.ones_like(tokens))
        bin_counts = bin_counts[:, :vocab_size]
        mask = bin_counts > 0

        return bin_counts, mask

    @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
    def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
        prompt_tokens_tensor = input_ids[:, :self.input_length+1]
        output_tokens_tensor = input_ids[:, self.input_length+1:]

        num_seqs, vocab_size = logits.shape
        _, prompt_mask = self._get_bin_counts_and_mask(
            prompt_tokens_tensor, vocab_size, num_seqs)
        output_bin_counts, output_mask = self._get_bin_counts_and_mask(
            output_tokens_tensor, vocab_size, num_seqs)

        repetition_penalties = torch.Tensor([self.repetition_penalties]).to(logits.device)
        frequency_penalties = torch.Tensor([self.frequency_penalties]).to(logits.device)
        presence_penalties = torch.Tensor([self.presence_penalties]).to(logits.device)

        repetition_penalties = repetition_penalties[:, None].repeat(1, vocab_size)
        repetition_penalties[~(prompt_mask | output_mask)] = 1.0
        logits = torch.where(logits > 0, logits / repetition_penalties,
                            logits * repetition_penalties)

        # We follow the definition in OpenAI API.
        # Refer to https://platform.openai.com/docs/api-reference/parameter-details
        logits -= frequency_penalties.unsqueeze_(dim=1) * output_bin_counts
        logits -= presence_penalties.unsqueeze_(dim=1) * output_mask

        return logits