pythia-31m-KI_v1-2048-scratch

Initialized from random weights based on config of EleutherAI/pythia-31m, 3 epochs bf16 It achieves the following results on the evaluation set:

  • Loss: 4.6160
  • Accuracy: 0.2448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 80085
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.3874 0.16 100 6.4212 0.1487
5.7088 0.32 200 5.7926 0.1725
5.4575 0.48 300 5.5160 0.1903
5.2451 0.64 400 5.3429 0.1995
5.0954 0.8 500 5.2109 0.2059
5.0358 0.96 600 5.1068 0.2123
4.94 1.12 700 5.0321 0.2157
4.8532 1.28 800 4.9605 0.2202
4.7602 1.44 900 4.9047 0.224
4.6965 1.6 1000 4.8526 0.2276
4.6855 1.76 1100 4.8139 0.2300
4.6573 1.91 1200 4.7739 0.2327
4.5968 2.07 1300 4.7451 0.2346
4.5688 2.23 1400 4.7152 0.2370
4.5205 2.39 1500 4.6842 0.2396
4.5369 2.55 1600 4.6598 0.2410
4.5106 2.71 1700 4.6352 0.2433
4.4375 2.87 1800 4.6160 0.2448

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 25.21
ARC (25-shot) 23.12
HellaSwag (10-shot) 25.23
MMLU (5-shot) 23.12
TruthfulQA (0-shot) 51.67
Winogrande (5-shot) 51.78
GSM8K (5-shot) 0.0
DROP (3-shot) 1.52
Downloads last month
780
Safetensors
Model size
30.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including pszemraj/pythia-31m-KI_v1-2048-scratch