File size: 5,182 Bytes
7d85991
fc9f6b0
 
 
 
 
7d85991
fc9f6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04df596
fc9f6b0
 
 
 
 
7d85991
fc9f6b0
 
 
 
5ef04bb
 
 
 
 
 
 
fc9f6b0
5ef04bb
 
fc9f6b0
5ef04bb
 
 
 
 
 
 
 
 
 
fc9f6b0
 
 
 
 
5ef04bb
fc9f6b0
 
 
5ef04bb
fc9f6b0
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef04bb
 
 
fc9f6b0
 
 
 
 
5ef04bb
98fc331
fc9f6b0
 
 
5ef04bb
fc9f6b0
 
 
 
 
 
 
 
04df596
fc9f6b0
 
 
 
5ef04bb
fc9f6b0
5ef04bb
 
fc9f6b0
5ef04bb
 
 
 
 
 
 
 
fc9f6b0
 
 
 
96087d8
505af9b
96087d8
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---

language:

- ca

license: apache-2.0

tags:

- "catalan"

- "text classification"

- "WikiCAT_ca"

- "CaText"

- "Catalan Textual Corpus"

datasets:

- "projecte-aina/WikiCAT_ca"

metrics:

- f1

model-index:
- name: roberta-base-ca-v2-cased-wikicat-ca
  results:
  - task: 
      type: text-classification 
    dataset:
      type: projecte-aina/WikiCAT_ca
      name: WikiCAT_ca
    metrics:
      - name: F1
        type: f1
        value: 77.823
        
widget:

- text: "La ressonància magnètica és una prova diagnòstica clau per a moltes malalties."

---

# Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Text Classification.

## Table of Contents
<details>
<summary>Click to expand</summary>

- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Limitations and bias](#limitations-and-bias)
- [Training](#training)
  - [Training data](#training-data)
  - [Training procedure](#training-procedure)
- [Evaluation](#evaluation)
   - [Variable and metrics](#variable-and-metrics)
   - [Evaluation results](#evaluation-results)
  - [Author](#author)
  - [Contact information](#contact-information)
  - [Copyright](#copyright)
  - [Licensing information](#licensing-information)
  - [Funding](#funding)
  - [Disclaimer](#disclaimer)
  
</details>

## Model description

The **roberta-base-ca-v2-cased-wikicat-ca** is a Text Classification model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details).

## Intended uses and limitations

**roberta-base-ca-v2-cased-wikicat-ca** model can be used to classify texts. The model is limited by its training dataset and may not generalize well for all use cases.

## How to use

Here is how to use this model:

```python
from transformers import pipeline
from pprint import pprint

nlp = pipeline("text-classification", model="roberta-base-ca-v2-cased-wikicat-ca")
example = "La ressonància magnètica és una prova diagnòstica clau per a moltes malalties."

tc_results = nlp(example)
pprint(tc_results)
```

## Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.

## Training

### Training data
We used the TC dataset in Catalan called [WikiCAT_ca](https://huggingface.co/datasets/projecte-aina/WikiCAT_ca) for training and evaluation.

### Training procedure
The model was trained with a batch size of 16 and three learning rates (1e-5, 3e-5, 5e-5) for 10 epochs. We then selected the best learning rate (3e-5) and checkpoint (epoch 3, step 1857) using the downstream task metric in the corresponding development set.

## Evaluation

### Variable and metrics

This model was finetuned maximizing F1 (weighted) score.

### Evaluation results
We evaluated the _roberta-base-ca-v2-cased-wikicat-ca_ on the WikiCAT_ca dev set:

| Model        | WikiCAT_ca (F1)| 
| ------------|:-------------|
| roberta-base-ca-v2-cased-wikicat-ca | 77.823 |

For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club).


## Additional information

### Author
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)

### Contact information
For further information, send an email to aina@bsc.es

### Copyright
Copyright by Text Mining Unit - Barcelona Supercomputing Center (2022)

### Licensing information
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

### Funding
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).


## Disclaimer

<details>
<summary>Click to expand</summary>

The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.

When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.

In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.