Edit model card

bert_based_dutch_lora_NER_model_sep29

This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1305
  • Precision: 0.9379
  • Recall: 0.9423
  • F1: 0.9401
  • Accuracy: 0.9806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0895 1.0 4850 0.1716 0.8983 0.9146 0.9064 0.9704
0.0809 2.0 9700 0.1483 0.9149 0.9193 0.9171 0.9737
0.0746 3.0 14550 0.1575 0.8939 0.9134 0.9036 0.9674
0.0703 4.0 19400 0.1488 0.9137 0.9239 0.9188 0.9754
0.0659 5.0 24250 0.1396 0.9244 0.9325 0.9284 0.9766
0.0657 6.0 29100 0.1451 0.9282 0.9356 0.9319 0.9765
0.0612 7.0 33950 0.1320 0.9287 0.9422 0.9354 0.9787
0.0588 8.0 38800 0.1385 0.9307 0.9408 0.9357 0.9794
0.0538 9.0 43650 0.1305 0.9379 0.9423 0.9401 0.9806
0.0498 10.0 48500 0.1327 0.9347 0.9408 0.9377 0.9796

Framework versions

  • PEFT 0.13.0
  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
699k params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for procit008/bert_based_dutch_lora_NER_model_sep29

Adapter
(1)
this model