Edit model card

Proximus-2x7B-v1

Proximus-2x7B-v1 is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: mlabonne/NeuralHermes-2.5-Mistral-7B
experts:
  - source_model: beowolx/MistralHermes-CodePro-7B-v1
    positive_prompts:
      - "code"
      - "python"
      - "javascript"
      - "programming"
      - "algorithm"
  - source_model: anthonylx/Prox-MistralHermes-7B
    positive_prompts:
      - "cybersecurity"
      - "information security"
      - "network security"
      - "hacking"
      - "encryption"

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "anthonylx/Proximus-2x7B-v1"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
4
Safetensors
Model size
12.9B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for preemware/Proximus-2x7B-v1

Quantizations
2 models