Edit model card

pos_final_xlm_en

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0719
  • Precision: 0.9686
  • Recall: 0.9705
  • F1: 0.9695
  • Accuracy: 0.9790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.99 60 3.0062 0.2412 0.1720 0.2008 0.3036
No log 1.99 120 0.5353 0.8699 0.8553 0.8625 0.8970
No log 2.99 180 0.1312 0.9578 0.9553 0.9566 0.9691
No log 3.99 240 0.0981 0.9621 0.9628 0.9625 0.9737
No log 4.99 300 0.0853 0.9652 0.9659 0.9655 0.9760
No log 5.99 360 0.0788 0.9656 0.9676 0.9666 0.9769
No log 6.99 420 0.0745 0.9664 0.9689 0.9677 0.9775
No log 7.99 480 0.0718 0.9675 0.9689 0.9682 0.9780
0.7956 8.99 540 0.0707 0.9679 0.9683 0.9681 0.9779
0.7956 9.99 600 0.0686 0.9682 0.9698 0.9690 0.9786
0.7956 10.99 660 0.0686 0.9689 0.9694 0.9692 0.9787
0.7956 11.99 720 0.0680 0.9679 0.9707 0.9693 0.9787
0.7956 12.99 780 0.0685 0.9683 0.9706 0.9694 0.9789
0.7956 13.99 840 0.0695 0.9689 0.9700 0.9694 0.9788
0.7956 14.99 900 0.0703 0.9682 0.9699 0.9690 0.9786
0.7956 15.99 960 0.0719 0.9686 0.9705 0.9695 0.9790
0.051 16.99 1020 0.0735 0.9687 0.9701 0.9694 0.9788
0.051 17.99 1080 0.0747 0.9684 0.9701 0.9692 0.9787
0.051 18.99 1140 0.0761 0.9685 0.9697 0.9691 0.9786
0.051 19.99 1200 0.0774 0.9678 0.9698 0.9688 0.9784
0.051 20.99 1260 0.0796 0.9685 0.9694 0.9690 0.9785
0.051 21.99 1320 0.0796 0.9681 0.9701 0.9691 0.9786
0.051 22.99 1380 0.0820 0.9684 0.9690 0.9687 0.9784
0.051 23.99 1440 0.0829 0.9679 0.9688 0.9683 0.9781
0.0318 24.99 1500 0.0854 0.9681 0.9690 0.9686 0.9782
0.0318 25.99 1560 0.0881 0.9677 0.9692 0.9684 0.9782
0.0318 26.99 1620 0.0893 0.9679 0.9690 0.9685 0.9783
0.0318 27.99 1680 0.0910 0.9676 0.9691 0.9683 0.9781
0.0318 28.99 1740 0.0919 0.9684 0.9686 0.9685 0.9783
0.0318 29.99 1800 0.0933 0.9678 0.9686 0.9682 0.9781
0.0318 30.99 1860 0.0947 0.9677 0.9688 0.9683 0.9781
0.0318 31.99 1920 0.0966 0.9678 0.9694 0.9686 0.9783
0.0318 32.99 1980 0.0974 0.9677 0.9689 0.9683 0.9781
0.0211 33.99 2040 0.0981 0.9684 0.9693 0.9688 0.9784
0.0211 34.99 2100 0.0989 0.9681 0.9690 0.9686 0.9783
0.0211 35.99 2160 0.1008 0.9679 0.9695 0.9687 0.9784
0.0211 36.99 2220 0.1015 0.9681 0.9689 0.9685 0.9782
0.0211 37.99 2280 0.1015 0.9677 0.9689 0.9683 0.9781
0.0211 38.99 2340 0.1024 0.9679 0.9690 0.9684 0.9782
0.0211 39.99 2400 0.1022 0.9680 0.9690 0.9685 0.9782

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.0
  • Datasets 2.18.0
  • Tokenizers 0.13.2
Downloads last month
43
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including pranaydeeps/lettuce_pos_en_xlm