whisper-small-full-data-language-v2-20ep

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.25e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: tpu
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • training_steps: 63840

Training results

Training Loss Epoch Step Validation Loss
0.1476 1.57 5000 0.2646
0.0995 3.13 10000 0.2161
0.0835 4.7 15000 0.1959
0.0706 6.27 20000 0.1845
0.063 7.83 25000 0.1750
0.0523 9.4 30000 0.1691
0.0497 10.97 35000 0.1629
0.0407 12.53 40000 0.1606
0.0345 14.1 45000 0.1583
0.0307 15.67 50000 0.1569
0.0266 17.23 55000 0.1555
0.0244 18.8 60000 0.1540

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.1.0a0+gitcc01568
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
21
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pphuc25/whisper-small-full-data-language-v2-20ep

Finetuned
(1989)
this model