am_hi_model

This model is a fine-tuned version of Piyush41/Sanskrit-Hindi on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.3728
  • Sacrebleu: 0.1368
  • Bleu: 0.0014
  • Rouge1: 0.0
  • Rouge2: 0.0
  • Rougel: 0.0
  • Ter: 97.8434
  • Gen Len: 20.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Sacrebleu Bleu Rouge1 Rouge2 Rougel Ter Gen Len
7.9097 1.0 509 6.8376 0.001 0.0 0.0 0.0 0.0 99.2079 20.0
6.6631 2.0 1018 6.2731 0.012 0.0001 0.0 0.0 0.0 98.8741 20.0
6.2666 3.0 1527 5.9668 0.0782 0.0008 0.0 0.0 0.0 98.3207 20.0
6.0185 4.0 2036 5.7664 0.0793 0.0008 0.0 0.0 0.0 98.3292 20.0
5.8656 5.0 2545 5.6281 0.112 0.0011 0.0 0.0 0.0 98.0673 20.0
5.7354 6.0 3054 5.5269 0.1582 0.0016 0.0 0.0 0.0 97.8476 20.0
5.6509 7.0 3563 5.4556 0.1561 0.0016 0.0 0.0 0.0 97.949 20.0
5.5912 8.0 4072 5.4093 0.1368 0.0014 0.0 0.0 0.0 97.9405 20.0
5.5534 9.0 4581 5.3812 0.1329 0.0013 0.0 0.0 0.0 97.856 20.0
5.5356 10.0 5090 5.3728 0.1368 0.0014 0.0 0.0 0.0 97.8434 20.0

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pk2743/am_hi_model

Finetuned
(1)
this model