Edit model card

nominal-groups-recognition-bert-base-spanish-wwm-cased

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3247
  • Body Part Precision: 0.7066
  • Body Part Recall: 0.7288
  • Body Part F1: 0.7175
  • Body Part Number: 413
  • Disease Precision: 0.7316
  • Disease Recall: 0.7662
  • Disease F1: 0.7485
  • Disease Number: 975
  • Family Member Precision: 0.8333
  • Family Member Recall: 0.8333
  • Family Member F1: 0.8333
  • Family Member Number: 30
  • Medication Precision: 0.8148
  • Medication Recall: 0.7097
  • Medication F1: 0.7586
  • Medication Number: 93
  • Procedure Precision: 0.6419
  • Procedure Recall: 0.6399
  • Procedure F1: 0.6409
  • Procedure Number: 311
  • Overall Precision: 0.7163
  • Overall Recall: 0.7344
  • Overall F1: 0.7252
  • Overall Accuracy: 0.9201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 13
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Body Part Precision Body Part Recall Body Part F1 Body Part Number Disease Precision Disease Recall Disease F1 Disease Number Family Member Precision Family Member Recall Family Member F1 Family Member Number Medication Precision Medication Recall Medication F1 Medication Number Procedure Precision Procedure Recall Procedure F1 Procedure Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4301 1.0 1004 0.3018 0.6054 0.7094 0.6533 413 0.6988 0.7067 0.7027 975 0.8889 0.8 0.8421 30 0.8025 0.6989 0.7471 93 0.5795 0.4920 0.5322 311 0.6645 0.6718 0.6681 0.9052
0.2384 2.0 2008 0.2903 0.6983 0.6949 0.6966 413 0.7402 0.7159 0.7278 975 0.8 0.8 0.8000 30 0.7283 0.7204 0.7243 93 0.6026 0.6045 0.6035 311 0.7069 0.6937 0.7003 0.9148
0.1625 3.0 3012 0.2948 0.6653 0.7603 0.7096 413 0.7412 0.7374 0.7393 975 0.9231 0.8 0.8571 30 0.8313 0.7419 0.7841 93 0.5789 0.6720 0.6220 311 0.6982 0.7327 0.7151 0.9188
0.1142 4.0 4016 0.3247 0.7066 0.7288 0.7175 413 0.7316 0.7662 0.7485 975 0.8333 0.8333 0.8333 30 0.8148 0.7097 0.7586 93 0.6419 0.6399 0.6409 311 0.7163 0.7344 0.7252 0.9201
0.0858 5.0 5020 0.3583 0.6996 0.7554 0.7264 413 0.7451 0.7436 0.7444 975 0.8333 0.8333 0.8333 30 0.8375 0.7204 0.7746 93 0.5976 0.6495 0.6225 311 0.7129 0.7305 0.7216 0.9180

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.