Edit model card

amazonPolarity_roBERTa_5E

This model is a fine-tuned version of roberta-base on the amazon_polarity dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2201
  • Accuracy: 0.96

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5785 0.05 50 0.2706 0.9133
0.2731 0.11 100 0.2379 0.9267
0.2223 0.16 150 0.1731 0.92
0.1887 0.21 200 0.1672 0.9267
0.1915 0.27 250 0.2946 0.9067
0.1981 0.32 300 0.1744 0.9267
0.1617 0.37 350 0.2349 0.92
0.1919 0.43 400 0.1605 0.9333
0.1713 0.48 450 0.1626 0.94
0.1961 0.53 500 0.1555 0.9467
0.1652 0.59 550 0.1996 0.94
0.1719 0.64 600 0.1848 0.9333
0.159 0.69 650 0.1783 0.9467
0.1533 0.75 700 0.2016 0.9467
0.1749 0.8 750 0.3943 0.8733
0.1675 0.85 800 0.1948 0.9133
0.1601 0.91 850 0.2044 0.92
0.1424 0.96 900 0.1061 0.9533
0.1447 1.01 950 0.2195 0.9267
0.0997 1.07 1000 0.2102 0.9333
0.1454 1.12 1050 0.1648 0.9467
0.1326 1.17 1100 0.2774 0.9
0.1192 1.23 1150 0.1337 0.96
0.1429 1.28 1200 0.1451 0.96
0.1227 1.33 1250 0.1995 0.94
0.1343 1.39 1300 0.2115 0.92
0.1208 1.44 1350 0.1832 0.9467
0.1314 1.49 1400 0.1298 0.96
0.1069 1.55 1450 0.1778 0.94
0.126 1.6 1500 0.1205 0.9667
0.1162 1.65 1550 0.1569 0.9533
0.0961 1.71 1600 0.1865 0.9467
0.13 1.76 1650 0.1458 0.96
0.1206 1.81 1700 0.1648 0.96
0.1096 1.87 1750 0.2221 0.9333
0.1138 1.92 1800 0.1727 0.9533
0.1258 1.97 1850 0.2036 0.9467
0.1032 2.03 1900 0.1710 0.9667
0.082 2.08 1950 0.2380 0.9467
0.101 2.13 2000 0.1868 0.9533
0.0913 2.19 2050 0.2934 0.9267
0.0859 2.24 2100 0.2385 0.9333
0.1019 2.29 2150 0.1697 0.9667
0.1069 2.35 2200 0.1815 0.94
0.0805 2.4 2250 0.2185 0.9467
0.0906 2.45 2300 0.1923 0.96
0.105 2.51 2350 0.1720 0.96
0.0866 2.56 2400 0.1710 0.96
0.0821 2.61 2450 0.2267 0.9533
0.107 2.67 2500 0.2203 0.9467
0.0841 2.72 2550 0.1621 0.9533
0.0811 2.77 2600 0.1954 0.9533
0.1077 2.83 2650 0.2107 0.9533
0.0771 2.88 2700 0.2398 0.9467
0.08 2.93 2750 0.1816 0.96
0.0827 2.99 2800 0.2311 0.9467
0.1118 3.04 2850 0.1825 0.96
0.0626 3.09 2900 0.2876 0.9333
0.0733 3.14 2950 0.2045 0.9467
0.0554 3.2 3000 0.1775 0.96
0.0569 3.25 3050 0.2208 0.9467
0.0566 3.3 3100 0.2113 0.9533
0.063 3.36 3150 0.2013 0.96
0.056 3.41 3200 0.2229 0.96
0.0791 3.46 3250 0.2472 0.9467
0.0867 3.52 3300 0.1630 0.9667
0.0749 3.57 3350 0.2066 0.9533
0.0653 3.62 3400 0.2085 0.96
0.0784 3.68 3450 0.2068 0.9467
0.074 3.73 3500 0.1976 0.96
0.076 3.78 3550 0.1953 0.9533
0.0807 3.84 3600 0.2246 0.9467
0.077 3.89 3650 0.1867 0.9533
0.0771 3.94 3700 0.2035 0.9533
0.0658 4.0 3750 0.1754 0.9667
0.0711 4.05 3800 0.1977 0.9667
0.066 4.1 3850 0.1806 0.9667
0.0627 4.16 3900 0.1819 0.96
0.0671 4.21 3950 0.2247 0.9533
0.0245 4.26 4000 0.2482 0.9467
0.0372 4.32 4050 0.2201 0.96
0.0607 4.37 4100 0.2381 0.9467
0.0689 4.42 4150 0.2159 0.96
0.0383 4.48 4200 0.2278 0.9533
0.0382 4.53 4250 0.2277 0.96
0.0626 4.58 4300 0.2325 0.96
0.0595 4.64 4350 0.2315 0.96
0.0578 4.69 4400 0.2284 0.96
0.0324 4.74 4450 0.2297 0.96
0.0476 4.8 4500 0.2154 0.96
0.0309 4.85 4550 0.2258 0.96
0.0748 4.9 4600 0.2131 0.96
0.0731 4.96 4650 0.2201 0.96

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
76

Dataset used to train pig4431/amazonPolarity_roBERTa_5E

Evaluation results