File size: 6,438 Bytes
31cf0d3 bf66e5a eed1d08 bf66e5a 31cf0d3 bf66e5a 31cf0d3 bf66e5a 355a0ec eed1d08 000ad8b dee492f bf66e5a 216cf30 31cf0d3 bf66e5a 4c4f932 31cf0d3 bf66e5a 31cf0d3 dee492f 31cf0d3 dee492f c5184ea 7e24db7 66e62c6 000ad8b 31cf0d3 eebf1ef 31cf0d3 eebf1ef 6d8b690 dee492f 31cf0d3 dee492f 31cf0d3 dee492f 31cf0d3 dee492f 31cf0d3 dee492f 31cf0d3 dee492f bf66e5a 31cf0d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import logging
from typing import Dict, List, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class EndpointHandler():
def __init__(self, path=""):
logging.info("Initializing EndpointHandler with model path: %s", path)
tokenizer = AutoTokenizer.from_pretrained(path)
tokenizer.pad_token = tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(path)
self.tokenizer = tokenizer
self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
logging.info("Starting inference")
inputs = data.pop("inputs", data)
additional_bad_words_ids = data.pop("additional_bad_words_ids", [])
# Log the input size
logging.info("Encoding inputs")
input_ids = self.tokenizer.encode(inputs, return_tensors="pt")
logging.info("Input IDs shape: %s", input_ids.shape)
max_generation_length = 75 # Desired number of tokens to generate
max_input_length = 4092 - max_generation_length # Maximum input length to allow space for generation
# 3070, 10456, [313, 334], [29898, 1068] corresponds to "(*", and we do not want to output a comment
# 13 is a newline character
# [1976, 441, 29889], [4920, 441, 29889] is "Abort." [4920, 18054, 29889] is "Aborted."
# [2087, 29885, 4430, 29889], [3253, 29885, 4430, 29889] is "Admitted."
# [3253, 29885, 4430, 29889]
bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889], [29898, 1068], [3253, 29885, 4430, 29889]]
bad_words_ids.extend(additional_bad_words_ids)
# Truncation and generation logging
if input_ids.shape[1] > max_input_length:
logging.info("Truncating input IDs to fit within max input length")
input_ids = input_ids[:, -max_input_length:]
max_length = input_ids.shape[1] + max_generation_length
logging.info("Generating output")
generated_ids = self.model.generate(
input_ids,
max_length=max_length,
bad_words_ids=bad_words_ids,
temperature=0.5,
top_k=40,
do_sample=True,
stopping_criteria=self.stopping_criteria,
)
logging.info("Finished generating output")
generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}]
logging.info("Inference complete")
return prediction
class StopAtPeriodCriteria(StoppingCriteria):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs):
last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True)
logging.info("StopAtPeriodCriteria called. Last token text: '%s'", last_token_text)
return '.' in last_token_text
# from typing import Dict, List, Any
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList
# class EndpointHandler():
# def __init__(self, path=""):
# tokenizer = AutoTokenizer.from_pretrained(path)
# tokenizer.pad_token = tokenizer.eos_token
# self.model = AutoModelForCausalLM.from_pretrained(path)
# self.tokenizer = tokenizer
# self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])
# def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
# """
# data args:
# inputs (:obj: `str`)
# kwargs
# Return:
# A :obj:`list` | `dict`: will be serialized and returned
# """
# inputs = data.pop("inputs", data)
# additional_bad_words_ids = data.pop("additional_bad_words_ids", [])
# # 3070, 10456, [313, 334], [29898, 1068] corresponds to "(*", and we do not want to output a comment
# # 13 is a newline character
# # [1976, 441, 29889], [4920, 441, 29889] is "Abort." [4920, 18054, 29889] is "Aborted."
# # [2087, 29885, 4430, 29889] is "Admitted."
# bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889], [29898, 1068]]
# bad_words_ids.extend(additional_bad_words_ids)
# input_ids = self.tokenizer.encode(inputs, return_tensors="pt")
# max_generation_length = 75 # Desired number of tokens to generate
# max_input_length = 4092 - max_generation_length # Maximum input length to allow space for generation
# # # Truncate input_ids to the most recent tokens that fit within the max_input_length
# if input_ids.shape[1] > max_input_length:
# input_ids = input_ids[:, -max_input_length:]
# max_length = input_ids.shape[1] + max_generation_length
# generated_ids = self.model.generate(
# input_ids,
# max_length=max_length, # 50 new tokens
# bad_words_ids=bad_words_ids,
# temperature=0.5,
# top_k=40,
# do_sample=True,
# stopping_criteria=self.stopping_criteria,
# )
# generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}]
# return prediction
# class StopAtPeriodCriteria(StoppingCriteria):
# def __init__(self, tokenizer):
# self.tokenizer = tokenizer
# def __call__(self, input_ids, scores, **kwargs):
# # Decode the last generated token to text
# last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True)
# logging.info("StopAtPeriodCriteria called. Last token text: '%s'", last_token_text)
# # Check if the decoded text ends with a period
# return '.' in last_token_text |