File size: 6,438 Bytes
31cf0d3
bf66e5a
eed1d08
bf66e5a
31cf0d3
 
bf66e5a
 
 
31cf0d3
bf66e5a
355a0ec
eed1d08
000ad8b
dee492f
bf66e5a
216cf30
31cf0d3
bf66e5a
4c4f932
31cf0d3
 
 
 
 
bf66e5a
31cf0d3
 
dee492f
31cf0d3
dee492f
 
c5184ea
7e24db7
 
66e62c6
000ad8b
31cf0d3
eebf1ef
31cf0d3
eebf1ef
6d8b690
dee492f
 
31cf0d3
dee492f
 
31cf0d3
dee492f
31cf0d3
dee492f
 
 
 
31cf0d3
dee492f
 
 
31cf0d3
dee492f
bf66e5a
 
 
 
 
 
 
31cf0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import logging
from typing import Dict, List, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

class EndpointHandler():
    def __init__(self, path=""):
        logging.info("Initializing EndpointHandler with model path: %s", path)
        tokenizer = AutoTokenizer.from_pretrained(path)
        tokenizer.pad_token = tokenizer.eos_token
        self.model = AutoModelForCausalLM.from_pretrained(path)
        self.tokenizer = tokenizer
        self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        logging.info("Starting inference")
        inputs = data.pop("inputs", data)
        additional_bad_words_ids = data.pop("additional_bad_words_ids", [])
        
        # Log the input size
        logging.info("Encoding inputs")
        input_ids = self.tokenizer.encode(inputs, return_tensors="pt")
        logging.info("Input IDs shape: %s", input_ids.shape)

        max_generation_length = 75  # Desired number of tokens to generate
        max_input_length = 4092 - max_generation_length  # Maximum input length to allow space for generation

        # 3070, 10456, [313, 334], [29898, 1068] corresponds to "(*", and we do not want to output a comment
        # 13 is a newline character
        # [1976, 441, 29889], [4920, 441, 29889] is "Abort." [4920, 18054, 29889] is "Aborted."
        # [2087, 29885, 4430, 29889], [3253, 29885, 4430, 29889] is "Admitted."
        # [3253, 29885, 4430, 29889]
        bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889], [29898, 1068], [3253, 29885, 4430, 29889]]
        bad_words_ids.extend(additional_bad_words_ids)

        # Truncation and generation logging
        if input_ids.shape[1] > max_input_length:
            logging.info("Truncating input IDs to fit within max input length")
            input_ids = input_ids[:, -max_input_length:]

        max_length = input_ids.shape[1] + max_generation_length
        
        logging.info("Generating output")
        generated_ids = self.model.generate(
            input_ids,
            max_length=max_length,
            bad_words_ids=bad_words_ids,
            temperature=0.5,
            top_k=40,
            do_sample=True,
            stopping_criteria=self.stopping_criteria,
        )
        logging.info("Finished generating output")

        generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
        prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}]
        logging.info("Inference complete")
        return prediction

class StopAtPeriodCriteria(StoppingCriteria):
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs):
        last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True)
        logging.info("StopAtPeriodCriteria called. Last token text: '%s'", last_token_text)
        return '.' in last_token_text




# from typing import Dict, List, Any
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList


# class EndpointHandler():
#     def __init__(self, path=""):
#         tokenizer = AutoTokenizer.from_pretrained(path)
#         tokenizer.pad_token = tokenizer.eos_token
#         self.model = AutoModelForCausalLM.from_pretrained(path)
#         self.tokenizer = tokenizer
#         self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])

#     def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
#         """
#        data args:
#             inputs (:obj: `str`)
#             kwargs
#       Return:
#             A :obj:`list` | `dict`: will be serialized and returned
#         """
#         inputs = data.pop("inputs", data)
#         additional_bad_words_ids = data.pop("additional_bad_words_ids", [])


#         # 3070, 10456, [313, 334], [29898, 1068] corresponds to "(*", and we do not want to output a comment
#         # 13 is a newline character
#         # [1976, 441, 29889], [4920, 441, 29889] is "Abort." [4920, 18054, 29889] is "Aborted."
#         # [2087, 29885, 4430, 29889] is "Admitted."
#         bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889], [29898, 1068]]
#         bad_words_ids.extend(additional_bad_words_ids)

#         input_ids = self.tokenizer.encode(inputs, return_tensors="pt")
#         max_generation_length = 75  # Desired number of tokens to generate
#         max_input_length = 4092 - max_generation_length  # Maximum input length to allow space for generation

#         # # Truncate input_ids to the most recent tokens that fit within the max_input_length
#         if input_ids.shape[1] > max_input_length:
#             input_ids = input_ids[:, -max_input_length:]

#         max_length = input_ids.shape[1] + max_generation_length
        
#         generated_ids = self.model.generate(
#             input_ids,
#             max_length=max_length,  # 50 new tokens
#             bad_words_ids=bad_words_ids,
#             temperature=0.5,
#             top_k=40,
#             do_sample=True,
#             stopping_criteria=self.stopping_criteria,
#         )

#         generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
#         prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}]
#         return prediction


# class StopAtPeriodCriteria(StoppingCriteria):
#     def __init__(self, tokenizer):
#         self.tokenizer = tokenizer

#     def __call__(self, input_ids, scores, **kwargs):
#         # Decode the last generated token to text
#         last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True)
#         logging.info("StopAtPeriodCriteria called. Last token text: '%s'", last_token_text)
#         # Check if the decoded text ends with a period
#         return '.' in last_token_text