Pierce Maloney
commited on
Commit
·
000ad8b
1
Parent(s):
833b301
using .generate, returning ids, custom bad_words
Browse files- handler.py +23 -11
handler.py
CHANGED
@@ -2,17 +2,16 @@ from typing import Dict, List, Any
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList
|
3 |
|
4 |
|
5 |
-
|
6 |
class EndpointHandler():
|
7 |
def __init__(self, path=""):
|
8 |
# Preload all the elements you are going to need at inference.
|
9 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(path)
|
11 |
tokenizer.pad_token = tokenizer.eos_token
|
12 |
-
self.
|
|
|
13 |
self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])
|
14 |
|
15 |
-
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
16 |
"""
|
17 |
data args:
|
18 |
inputs (:obj: `str`)
|
@@ -22,16 +21,29 @@ class EndpointHandler():
|
|
22 |
"""
|
23 |
inputs = data.pop("inputs", data)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
temperature=1,
|
33 |
top_k=40,
|
|
|
34 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
return prediction
|
36 |
|
37 |
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList
|
3 |
|
4 |
|
|
|
5 |
class EndpointHandler():
|
6 |
def __init__(self, path=""):
|
7 |
# Preload all the elements you are going to need at inference.
|
8 |
tokenizer = AutoTokenizer.from_pretrained(path)
|
|
|
9 |
tokenizer.pad_token = tokenizer.eos_token
|
10 |
+
self.model = AutoModelForCausalLM.from_pretrained(path)
|
11 |
+
self.tokenizer = tokenizer
|
12 |
self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])
|
13 |
|
14 |
+
def __call__(self, data: Dict[str, Any], additional_bad_words_ids: List[List[int]] = None) -> List[Dict[str, Any]]:
|
15 |
"""
|
16 |
data args:
|
17 |
inputs (:obj: `str`)
|
|
|
21 |
"""
|
22 |
inputs = data.pop("inputs", data)
|
23 |
|
24 |
+
|
25 |
+
# Bad word: id 3070, 10456 corresponds to "(*", and we do not want to output a comment
|
26 |
+
bad_words_ids = [[3070], [313, 334], [10456]]
|
27 |
+
if additional_bad_words_ids:
|
28 |
+
bad_words_ids.extend(additional_bad_words_ids)
|
29 |
+
|
30 |
+
input_ids = self.tokenizer.encode(inputs, return_tensors="pt")
|
31 |
+
|
32 |
+
# Generate text using model.generate
|
33 |
+
generated_ids = self.model.generate(
|
34 |
+
input_ids,
|
35 |
+
max_length=input_ids.shape[1] + 50, # 50 new tokens
|
36 |
+
bad_words_ids=bad_words_ids,
|
37 |
temperature=1,
|
38 |
top_k=40,
|
39 |
+
stopping_criteria=self.stopping_criteria,
|
40 |
)
|
41 |
+
|
42 |
+
# Slice the generated_ids to only include the new tokens generated, excluding the input tokens
|
43 |
+
generated_ids = generated_ids[:, input_ids.shape[1]:]
|
44 |
+
|
45 |
+
generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
46 |
+
prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0].tolist()}]
|
47 |
return prediction
|
48 |
|
49 |
|