distilroberta-base-ner-wikiann
This model is a fine-tuned version of distilroberta-base on the wikiann dataset.
eval F1-Score: 83,78 test F1-Score: 83,76
Model Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-wikiann")
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-wikiann")
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Philipp and live in Germany"
nlp(example)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.9086903597787154e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
Training results
It achieves the following results on the evaluation set:
- Loss: 0.3156
- Precision: 0.8332
- Recall: 0.8424
- F1: 0.8378
- Accuracy: 0.9193
It achieves the following results on the test set:
- Loss: 0.3023
- Precision: 0.8301
- Recall: 0.8452
- F1: 0.8376
- Accuracy: 0.92
Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.6.2
- Tokenizers 0.10.2
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train philschmid/distilroberta-base-ner-wikiann
Evaluation results
- Precision on wikiannself-reported0.833
- Recall on wikiannself-reported0.842
- F1 on wikiannself-reported0.838
- Accuracy on wikiannself-reported0.919
- Accuracy on wikianntest set verified0.920
- Precision on wikianntest set verified0.926
- Recall on wikianntest set verified0.935
- F1 on wikianntest set verified0.930
- loss on wikianntest set verified0.301