RAFT
Collection
RAFT finetuned models
•
4 items
•
Updated
LORA adapters of meta-llama/Meta-Llama-3.1-8B-Instruct
, trained on 100 context samples from the HotpotQA dataset using the RAFT method, enable the model to better reason through the context and return more accurate outcomes.
Evaluated on FULL validation set of HotpotQA.
type | exatch_match | f1 | precision | recall |
---|---|---|---|---|
pretrained | 0.2980 | 0.3979 | 0.4116 | 0.5263 |
finetuned | 0.3606 | 0.4857 | 0.4989 | 0.5318 |
Finetuned version increases 22% on F1 and 15% on average
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model_id = "phatvo/Meta-Llama3.1-8B-Instruct-RAFT"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="auto", revision="main", trust_remote_code=True)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
inst = "Given the question and context below, thinking in logical reasoning way for your answer.\
Please provide only your answer in this format: CoT Answer: {reason} <ANSWER>: {answer}."
context = ""
question = ""
prompt = f"{context}\n{question}"
chat = [
{"role": "system", "content": inst},
{"role": "user", "content": prompt},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False)
output = pipe(prompt,
temperature=0.001,
max_new_tokens=1024, # recommended to set it more than 800
return_full_text=False,
do_sample=True)
print(output[0]["generated_text"])
# CoT Answer: thoughts... <ANSWER>: final_answer...