whisper-medium-NST-uf-linlr

This model is a fine-tuned version of openai/whisper-medium on the NBAILAB/NST - NO-CLOSE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3007
  • Wer: 9.1220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 72
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2046 0.05 1000 0.3426 15.2794
0.148 0.1 2000 0.3284 10.8324
0.121 0.15 3000 0.3092 12.8848
0.1089 0.2 4000 0.2808 10.4903
0.0976 0.25 5000 0.2617 9.9202
0.0901 0.3 6000 0.2604 21.8928
0.0834 0.35 7000 0.2877 9.3501
0.0825 0.4 8000 0.2794 9.3501
0.0553 1.05 9000 0.2845 9.5781
0.0472 1.1 10000 0.2814 24.1733
0.0409 1.15 11000 0.3084 8.0958
0.041 1.2 12000 0.2865 9.2360
0.0353 1.25 13000 0.2828 6.4994
0.0348 1.3 14000 0.2708 7.5257
0.0349 1.35 15000 0.2842 23.0331
0.0361 1.4 16000 0.2769 10.1482
0.0249 2.04 17000 0.2935 8.8940
0.0204 2.09 18000 0.2874 12.4287
0.0175 2.14 19000 0.2882 12.9989
0.0197 2.19 20000 0.3007 9.1220

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.