Edit model card

wav2vec2-xlsr-53-300m-mls-german-ft

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MULTILINGUAL_LIBRISPEECH - GERMAN 10h dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2219
  • Wer: 0.1288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 200.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9888 7.25 500 2.9192 1.0
2.9313 14.49 1000 2.8698 1.0
1.068 21.74 1500 0.2647 0.2565
0.8151 28.99 2000 0.2067 0.1719
0.764 36.23 2500 0.1975 0.1568
0.7332 43.48 3000 0.1812 0.1463
0.5952 50.72 3500 0.1923 0.1428
0.6655 57.97 4000 0.1900 0.1404
0.574 65.22 4500 0.1822 0.1370
0.6211 72.46 5000 0.1937 0.1355
0.5883 79.71 5500 0.1872 0.1335
0.5666 86.96 6000 0.1874 0.1324
0.5526 94.2 6500 0.1998 0.1368
0.5671 101.45 7000 0.2054 0.1365
0.5514 108.7 7500 0.1987 0.1340
0.5382 115.94 8000 0.2104 0.1344
0.5819 123.19 8500 0.2125 0.1334
0.5277 130.43 9000 0.2063 0.1330
0.4626 137.68 9500 0.2105 0.1310
0.5842 144.93 10000 0.2087 0.1307
0.535 152.17 10500 0.2137 0.1309
0.5081 159.42 11000 0.2215 0.1302
0.6033 166.67 11500 0.2162 0.1302
0.5549 173.91 12000 0.2198 0.1286
0.5389 181.16 12500 0.2241 0.1293
0.4912 188.41 13000 0.2190 0.1290
0.4671 195.65 13500 0.2218 0.1290

Framework versions

  • Transformers 4.13.0.dev0
  • Pytorch 1.10.0
  • Datasets 1.15.2.dev0
  • Tokenizers 0.10.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train patrickvonplaten/wav2vec2-xlsr-53-300m-mls-german-ft