How to use?
- We use Unsloth for faster inference and load the adapter:
from unsloth import FastLanguageModel
max_seq_length = 8192
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "patched-codes/Llama-3.2-1B-FastApply",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
- The model works with original code and the edited code as input to generate the final updated code:
original_code = """import React from 'react';
import { Loader } from 'lucide-react';
interface ButtonProps {
text: string;
onClick?: () => void;
loading?: boolean;
disabled?: boolean;
icon?: React.ReactNode;
}
const Button: React.FC<ButtonProps> = ({
text,
onClick,
loading = false,
disabled = false,
icon
}) => (
<button
className="bg-blue-500 text-white p-2 rounded flex items-center gap-2"
onClick={onClick}
disabled={disabled || loading}
>
{loading ? <Loader className="animate-spin" /> : icon}
{text}
</button>
);
export default Button;
"""
update_snippet = """interface ButtonProps {
variant?: 'primary' | 'secondary' | 'danger';
size?: 'small' | 'medium' | 'large';
// ... other props
}
const Button: React.FC<ButtonProps> = ({
variant = 'primary',
size = 'medium',
// ... other props
}) => (
<button
className={`flex items-center gap-2 rounded ${
size === 'small' ? 'p-1 text-sm' :
size === 'large' ? 'p-3 text-lg' :
'p-2 text-md'
} ${
variant === 'primary' ? 'bg-blue-500 text-white' :
variant === 'secondary' ? 'bg-gray-500 text-white' :
'bg-red-500 text-white'
}`}
// ... other attributes
>
// ... existing code ...
</button>
);
"""
- Prepare your input following the prompt structure:
input_text = f"""
Merge all changes from the <update> snippet into the <code> below.
- Preserve the code's structure, order, comments, and indentation exactly.
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
<code>{original_code}</code>
<update>{update_snippet}</update>
Provide the complete updated code.
"""
messages = [
{"role": "system", "content": "You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated."},
{"role": "user", "content": input_text.strip()},
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True, # Must add for generation
return_tensors = "pt",
).to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
output = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 8192,
use_cache = True, temperature = 1.5, min_p = 0.1)
response = tokenizer.decode(output[0][len(inputs[0]):])
updated_code = response.split("<updated-code>")[1].split("</updated-code>")[0]
Uploaded model
- Developed by: patched-codes
- License: apache-2.0
- Finetuned from model : unsloth/llama-3.2-1b-instruct-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 415