Whisper Base ML - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2456
  • Wer: 48.0535

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7249 4.02 500 0.3786 70.8029
0.3377 4.02 1000 0.2477 56.2044
0.25 9.01 1500 0.2241 49.5134
0.2009 14.01 2000 0.2158 46.9586
0.1674 19.0 2500 0.2188 49.3917
0.142 23.02 3000 0.2194 49.6350
0.123 28.01 3500 0.2280 49.7567
0.1103 33.01 4000 0.2424 51.4599
0.0999 38.0 4500 0.2435 50.6083
0.0951 42.02 5000 0.2456 48.0535

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using parambharat/whisper-base-ml 1

Evaluation results