Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AI
This review presents a comprehensive analysis of two emerging paradigms in AI-assisted software development: vibe coding and agentic coding. While both leverage large language models (LLMs), they differ fundamentally in autonomy, architectural design, and the role of the developer. Vibe coding emphasizes intuitive, human-in-the-loop interaction through prompt-based, conversational workflows that support ideation, experimentation, and creative exploration. In contrast, agentic coding enables autonomous software development through goal-driven agents capable of planning, executing, testing, and iterating tasks with minimal human intervention. We propose a detailed taxonomy spanning conceptual foundations, execution models, feedback loops, safety mechanisms, debugging strategies, and real-world tool ecosystems. Through comparative workflow analysis and 20 detailed use cases, we illustrate how vibe systems thrive in early-stage prototyping and education, while agentic systems excel in enterprise-grade automation, codebase refactoring, and CI/CD integration. We further examine emerging trends in hybrid architectures, where natural language interfaces are coupled with autonomous execution pipelines. Finally, we articulate a future roadmap for agentic AI, outlining the infrastructure needed for trustworthy, explainable, and collaborative systems. Our findings suggest that successful AI software engineering will rely not on choosing one paradigm, but on harmonizing their strengths within a unified, human-centered development lifecycle.
CodePDE: An Inference Framework for LLM-driven PDE Solver Generation
Partial differential equations (PDEs) are fundamental to modeling physical systems, yet solving them remains a complex challenge. Traditional numerical solvers rely on expert knowledge to implement and are computationally expensive, while neural-network-based solvers require large training datasets and often lack interpretability. In this work, we frame PDE solving as a code generation task and introduce CodePDE, the first inference framework for generating PDE solvers using large language models (LLMs). Leveraging advanced inference-time algorithms and scaling strategies, CodePDE unlocks critical capacities of LLM for PDE solving: reasoning, debugging, selfrefinement, and test-time scaling -- all without task-specific tuning. CodePDE achieves superhuman performance across a range of representative PDE problems. We also present a systematic empirical analysis of LLM generated solvers, analyzing their accuracy, efficiency, and numerical scheme choices. Our findings highlight the promise and the current limitations of LLMs in PDE solving, offering a new perspective on solver design and opportunities for future model development. Our code is available at https://github.com/LithiumDA/CodePDE.
DebugBench: Evaluating Debugging Capability of Large Language Models
Large Language Models (LLMs) have demonstrated exceptional coding capability. However, as another critical component of programming proficiency, the debugging capability of LLMs remains relatively unexplored. Previous evaluations of LLMs' debugging ability are significantly limited by the risk of data leakage, the scale of the dataset, and the variety of tested bugs. To overcome these deficiencies, we introduce `DebugBench', an LLM debugging benchmark consisting of 4,253 instances. It covers four major bug categories and 18 minor types in C++, Java, and Python. To construct DebugBench, we collect code snippets from the LeetCode community, implant bugs into source data with GPT-4, and assure rigorous quality checks. We evaluate two commercial and three open-source models in a zero-shot scenario. We find that (1) while closed-source models like GPT-4 exhibit inferior debugging performance compared to humans, open-source models such as Code Llama fail to attain any pass rate scores; (2) the complexity of debugging notably fluctuates depending on the bug category; (3) incorporating runtime feedback has a clear impact on debugging performance which is not always helpful. As an extension, we also compare LLM debugging and code generation, revealing a strong correlation between them for closed-source models. These findings will benefit the development of LLMs in debugging.
Fully Autonomous Programming with Large Language Models
Current approaches to program synthesis with Large Language Models (LLMs) exhibit a "near miss syndrome": they tend to generate programs that semantically resemble the correct answer (as measured by text similarity metrics or human evaluation), but achieve a low or even zero accuracy as measured by unit tests due to small imperfections, such as the wrong input or output format. This calls for an approach known as Synthesize, Execute, Debug (SED), whereby a draft of the solution is generated first, followed by a program repair phase addressing the failed tests. To effectively apply this approach to instruction-driven LLMs, one needs to determine which prompts perform best as instructions for LLMs, as well as strike a balance between repairing unsuccessful programs and replacing them with newly generated ones. We explore these trade-offs empirically, comparing replace-focused, repair-focused, and hybrid debug strategies, as well as different template-based and model-based prompt-generation techniques. We use OpenAI Codex as the LLM and Program Synthesis Benchmark 2 as a database of problem descriptions and tests for evaluation. The resulting framework outperforms both conventional usage of Codex without the repair phase and traditional genetic programming approaches.
A Unified Debugging Approach via LLM-Based Multi-Agent Synergy
Tremendous efforts have been devoted to automating software debugging, a time-consuming process involving fault localization and repair generation. Recently, Large Language Models (LLMs) have shown great potential in automated debugging. However, we identified three challenges posed to traditional and LLM-based debugging tools: 1) the upstream imperfection of fault localization affects the downstream repair, 2) the deficiency in handling complex logic errors, and 3) the ignorance of program contexts. In this context, we propose the first automated, unified debugging framework, FixAgent, via LLM agent synergy. FixAgent can perform end-to-end localization, repair, and analysis of bugs. Our insight is that LLMs can benefit from general software engineering principles recognized by human developers in debugging, such as rubber duck debugging, enabling a better understanding of program functionality and logic bugs. Hence, we create three designs inspired by rubber ducking to address these challenges. They are agent specialization and synergy, key variable tracking, and program context comprehension, which request LLMs to provide explicit explanations and force them to focus on crucial program logic information. Experiments on the widely used dataset QuixBugs show that FixAgent correctly fixes 79 out of 80 bugs, 9 of which have never been fixed. It also plausibly patches 1.9X more defects than the best-performing repair tool on CodeFlaws, even with no bug location information and fewer than 0.6% sampling times. On average, FixAgent increases about 20% plausible and correct fixes compared to its base model using different LLMs, showing the effectiveness of our designs. Moreover, the correctness rate of FixAgent reaches remarkably 97.26%, indicating that FixAgent can potentially overcome the overfitting issue of the existing approaches.
LDB: A Large Language Model Debugger via Verifying Runtime Execution Step-by-step
Large language models (LLMs) are leading significant progress in code generation. Beyond one-pass code generation, recent works further integrate unit tests and program verifiers into LLMs to iteratively refine the generated programs. However, these works consider the generated programs as an indivisible entity, which falls short for LLMs in debugging the programs, especially when the programs contain complex logic flows and data operations. In contrast, when human developers debug programs, they typically set breakpoints and selectively examine runtime execution information. The execution flow and the intermediate variables play a crucial role in the debugging process, yet they are underutilized in the existing literature on code generation. In this study, we introduce Large Language Model Debugger (LDB), a novel debugging framework that enables LLMs to refine their generated programs with the runtime execution information. Specifically, LDB segments the programs into basic blocks and tracks the values of intermediate variables after each block throughout the runtime execution. This allows LLMs to concentrate on simpler code units within the overall execution flow, verify their correctness against the task description block by block, and efficiently pinpoint any potential errors. Experiments demonstrate that LDB consistently enhances the baseline performance by up to 9.8% across the HumanEval, MBPP, and TransCoder benchmarks, archiving new state-of-the-art performance in code debugging for various LLM selections.
MdEval: Massively Multilingual Code Debugging
Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios.
VDebugger: Harnessing Execution Feedback for Debugging Visual Programs
Visual programs are executable code generated by large language models to address visual reasoning problems. They decompose complex questions into multiple reasoning steps and invoke specialized models for each step to solve the problems. However, these programs are prone to logic errors, with our preliminary evaluation showing that 58% of the total errors are caused by program logic errors. Debugging complex visual programs remains a major bottleneck for visual reasoning. To address this, we introduce VDebugger, a novel critic-refiner framework trained to localize and debug visual programs by tracking execution step by step. VDebugger identifies and corrects program errors leveraging detailed execution feedback, improving interpretability and accuracy. The training data is generated through an automated pipeline that injects errors into correct visual programs using a novel mask-best decoding technique. Evaluations on six datasets demonstrate VDebugger's effectiveness, showing performance improvements of up to 3.2% in downstream task accuracy. Further studies show VDebugger's ability to generalize to unseen tasks, bringing a notable improvement of 2.3% on the unseen COVR task. Code, data and models are made publicly available at https://github.com/shirley-wu/vdebugger/
Leveraging Print Debugging to Improve Code Generation in Large Language Models
Large language models (LLMs) have made significant progress in code generation tasks, but their performance in tackling programming problems with complex data structures and algorithms remains suboptimal. To address this issue, we propose an in-context learning approach that guides LLMs to debug by using a "print debugging" method, which involves inserting print statements to trace and analysing logs for fixing the bug. We collect a Leetcode problem dataset and evaluate our method using the Leetcode online judging system. Experiments with GPT-4 demonstrate the effectiveness of our approach, outperforming rubber duck debugging in easy and medium-level Leetcode problems by 1.5% and 17.9%.
Teaching Large Language Models to Self-Debug
Large language models (LLMs) have achieved impressive performance on code generation. However, for complex programming tasks, generating the correct solution in one go becomes challenging, thus some prior works have designed program repair approaches to improve code generation performance. In this work, we propose Self-Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations. In particular, we demonstrate that Self-Debugging can teach the large language model to perform rubber duck debugging; i.e., without any feedback on the code correctness or error messages, the model is able to identify its mistakes by explaining the generated code in natural language. Self-Debugging achieves the state-of-the-art performance on several code generation benchmarks, including the Spider dataset for text-to-SQL generation, TransCoder for C++-to-Python translation, and MBPP for text-to-Python generation. On the Spider benchmark where there are no unit tests to verify the correctness of predictions, Self-Debugging with code explanation consistently improves the baseline by 2-3%, and improves the prediction accuracy on problems of the hardest label by 9%. On TransCoder and MBPP where unit tests are available, Self-Debugging improves the baseline accuracy by up to 12%. Meanwhile, by leveraging feedback messages and reusing failed predictions, Self-Debugging notably improves sample efficiency, and can match or outperform baseline models that generate more than 10x candidate programs.
Training LLMs to Better Self-Debug and Explain Code
In the domain of code generation, self-debugging is crucial. It allows LLMs to refine their generated code based on execution feedback. This is particularly important because generating correct solutions in one attempt proves challenging for complex tasks. Prior works on self-debugging mostly focus on prompting methods by providing LLMs with few-shot examples, which work poorly on small open-sourced LLMs. In this work, we propose a training framework that significantly improves self-debugging capability of LLMs. Intuitively, we observe that a chain of explanations on the wrong code followed by code refinement helps LLMs better analyze the wrong code and do refinement. We thus propose an automated pipeline to collect a high-quality dataset for code explanation and refinement by generating a number of explanations and refinement trajectories and filtering via execution verification. We perform supervised fine-tuning (SFT) and further reinforcement learning (RL) on both success and failure trajectories with a novel reward design considering code explanation and refinement quality. SFT improves the pass@1 by up to 15.92% and pass@10 by 9.30% over four benchmarks. RL training brings additional up to 3.54% improvement on pass@1 and 2.55% improvement on pass@10. The trained LLMs show iterative refinement ability, and can keep refining code continuously. Lastly, our human evaluation shows that the LLMs trained with our framework generate more useful code explanations and help developers better understand bugs in source code.
From Code to Correctness: Closing the Last Mile of Code Generation with Hierarchical Debugging
While large language models have made significant strides in code generation, the pass rate of the generated code is bottlenecked on subtle errors, often requiring human intervention to pass tests, especially for complex problems. Existing LLM-based debugging systems treat generated programs as monolithic units, failing to address bugs at multiple levels of granularity, from low-level syntax errors to high-level algorithmic flaws. In this paper, we introduce Multi-Granularity Debugger (MGDebugger), a hierarchical code debugger by isolating, identifying, and resolving bugs at various levels of granularity. MGDebugger decomposes problematic code into a hierarchical tree structure of subfunctions, with each level representing a particular granularity of error. During debugging, it analyzes each subfunction and iteratively resolves bugs in a bottom-up manner. To effectively test each subfunction, we propose an LLM-simulated Python executor, which traces code execution and tracks important variable states to pinpoint errors accurately. Extensive experiments demonstrate that MGDebugger outperforms existing debugging systems, achieving an 18.9% improvement in accuracy over seed generations in HumanEval and a 97.6% repair success rate in HumanEvalFix. Furthermore, MGDebugger effectively fixes bugs across different categories and difficulty levels, demonstrating its robustness and effectiveness.
Prompting Is All You Need: Automated Android Bug Replay with Large Language Models
Bug reports are vital for software maintenance that allow users to inform developers of the problems encountered while using the software. As such, researchers have committed considerable resources toward automating bug replay to expedite the process of software maintenance. Nonetheless, the success of current automated approaches is largely dictated by the characteristics and quality of bug reports, as they are constrained by the limitations of manually-crafted patterns and pre-defined vocabulary lists. Inspired by the success of Large Language Models (LLMs) in natural language understanding, we propose AdbGPT, a new lightweight approach to automatically reproduce the bugs from bug reports through prompt engineering, without any training and hard-coding effort. AdbGPT leverages few-shot learning and chain-of-thought reasoning to elicit human knowledge and logical reasoning from LLMs to accomplish the bug replay in a manner similar to a developer. Our evaluations demonstrate the effectiveness and efficiency of our AdbGPT to reproduce 81.3% of bug reports in 253.6 seconds, outperforming the state-of-the-art baselines and ablation studies. We also conduct a small-scale user study to confirm the usefulness of AdbGPT in enhancing developers' bug replay capabilities.
Revisit Self-Debugging with Self-Generated Tests for Code Generation
Large language models (LLMs) have shown significant advancements in code generation, but still face challenges on tasks beyond their basic capabilities. Recently, the notion of self-debugging has been proposed to boost the performance of code generation by leveraging execution feedback from tests. Despite its promise, the availability of high-quality tests in real-world scenarios is limited. In this context, self-debugging with self-generated tests is a promising solution but lacks a full exploration of its limitations and practical potential. Therefore, we investigate its efficacy on diverse programming problems. To deepen our understanding, we propose two distinct paradigms for the process: post-execution and in-execution self-debugging. Within the scope of self-contained Python programming tasks, we find that post-execution self-debugging struggles on basic problems but shows potential for improvement on competitive ones, due to the bias introduced by self-generated tests. On the other hand, in-execution self-debugging enables LLMs to mitigate the bias by solely leveraging intermediate states during execution, thereby enhancing code generation.
RLocator: Reinforcement Learning for Bug Localization
Software developers spend a significant portion of time fixing bugs in their projects. To streamline this process, bug localization approaches have been proposed to identify the source code files that are likely responsible for a particular bug. Prior work proposed several similarity-based machine-learning techniques for bug localization. Despite significant advances in these techniques, they do not directly optimize the evaluation measures. We argue that directly optimizing evaluation measures can positively contribute to the performance of bug localization approaches. Therefore, In this paper, we utilize Reinforcement Learning (RL) techniques to directly optimize the ranking metrics. We propose RLocator, a Reinforcement Learning-based bug localization approach. We formulate RLocator using a Markov Decision Process (MDP) to optimize the evaluation measures directly. We present the technique and experimentally evaluate it based on a benchmark dataset of 8,316 bug reports from six highly popular Apache projects. The results of our evaluation reveal that RLocator achieves a Mean Reciprocal Rank (MRR) of 0.62, a Mean Average Precision (MAP) of 0.59, and a Top 1 score of 0.46. We compare RLocator with two state-of-the-art bug localization tools, FLIM and BugLocator. Our evaluation reveals that RLocator outperforms both approaches by a substantial margin, with improvements of 38.3% in MAP, 36.73% in MRR, and 23.68% in the Top K metric. These findings highlight that directly optimizing evaluation measures considerably contributes to performance improvement of the bug localization problem.
NExT: Teaching Large Language Models to Reason about Code Execution
A fundamental skill among human developers is the ability to understand and reason about program execution. As an example, a programmer can mentally simulate code execution in natural language to debug and repair code (aka. rubber duck debugging). However, large language models (LLMs) of code are typically trained on the surface textual form of programs, thus may lack a semantic understanding of how programs execute at run-time. To address this issue, we propose NExT, a method to teach LLMs to inspect the execution traces of programs (variable states of executed lines) and reason about their run-time behavior through chain-of-thought (CoT) rationales. Specifically, NExT uses self-training to bootstrap a synthetic training set of execution-aware rationales that lead to correct task solutions (e.g., fixed programs) without laborious manual annotation. Experiments on program repair tasks based on MBPP and HumanEval demonstrate that NExT improves the fix rate of a PaLM 2 model, by 26.1% and 14.3% absolute, respectively, with significantly improved rationale quality as verified by automated metrics and human raters. Our model can also generalize to scenarios where program traces are absent at test-time.
CODESIM: Multi-Agent Code Generation and Problem Solving through Simulation-Driven Planning and Debugging
Large Language Models (LLMs) have made significant strides in code generation and problem solving. Current approaches employ external tool-based iterative debuggers that use compiler or other tool-based runtime feedback to refine coarse programs generated by various methods. However, the effectiveness of these approaches heavily relies on the quality of the initial code generation, which remains an open challenge. In this paper, we introduce CodeSim, a novel multi-agent code generation framework that comprehensively addresses the stages of program synthesis-planning, coding, and debugging-through a human-like perception approach. As human verifies their understanding of any algorithms through visual simulation, CodeSim uniquely features a method of plan verification and internal debugging through the step-by-step simulation of input/output. Extensive experiments across seven challenging competitive problem-solving and program synthesis benchmarks demonstrate CodeSim's remarkable code generation capabilities. Our framework achieves new state-of-the-art (pass@1) results-(HumanEval 95.1%, MBPP 90.7%, APPS 22%, and CodeContests 29.1%). Furthermore, our method shows potential for even greater enhancement when cascaded with external debuggers. To facilitate further research and development in this area, we have open-sourced our framework in this link (https://kagnlp.github.io/codesim.github.io/).
Instruct, Not Assist: LLM-based Multi-Turn Planning and Hierarchical Questioning for Socratic Code Debugging
Socratic questioning is an effective teaching strategy, encouraging critical thinking and problem-solving. The conversational capabilities of large language models (LLMs) show great potential for providing scalable, real-time student guidance. However, current LLMs often give away solutions directly, making them ineffective instructors. We tackle this issue in the code debugging domain with TreeInstruct, an Instructor agent guided by a novel state space-based planning algorithm. TreeInstruct asks probing questions to help students independently identify and resolve errors. It estimates a student's conceptual and syntactical knowledge to dynamically construct a question tree based on their responses and current knowledge state, effectively addressing both independent and dependent mistakes concurrently in a multi-turn interaction setting. In addition to using an existing single-bug debugging benchmark, we construct a more challenging multi-bug dataset of 150 coding problems, incorrect solutions, and bug fixes -- all carefully constructed and annotated by experts. Extensive evaluation shows TreeInstruct's state-of-the-art performance on both datasets, proving it to be a more effective instructor than baselines. Furthermore, a real-world case study with five students of varying skill levels further demonstrates TreeInstruct's ability to guide students to debug their code efficiently with minimal turns and highly Socratic questioning.
FLAG: Finding Line Anomalies (in code) with Generative AI
Code contains security and functional bugs. The process of identifying and localizing them is difficult and relies on human labor. In this work, we present a novel approach (FLAG) to assist human debuggers. FLAG is based on the lexical capabilities of generative AI, specifically, Large Language Models (LLMs). Here, we input a code file then extract and regenerate each line within that file for self-comparison. By comparing the original code with an LLM-generated alternative, we can flag notable differences as anomalies for further inspection, with features such as distance from comments and LLM confidence also aiding this classification. This reduces the inspection search space for the designer. Unlike other automated approaches in this area, FLAG is language-agnostic, can work on incomplete (and even non-compiling) code and requires no creation of security properties, functional tests or definition of rules. In this work, we explore the features that help LLMs in this classification and evaluate the performance of FLAG on known bugs. We use 121 benchmarks across C, Python and Verilog; with each benchmark containing a known security or functional weakness. We conduct the experiments using two state of the art LLMs in OpenAI's code-davinci-002 and gpt-3.5-turbo, but our approach may be used by other models. FLAG can identify 101 of the defects and helps reduce the search space to 12-17% of source code.
MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation
Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.
Less is More: Adaptive Program Repair with Bug Localization and Preference Learning
Automated Program Repair (APR) is a task to automatically generate patches for the buggy code. However, most research focuses on generating correct patches while ignoring the consistency between the fixed code and the original buggy code. How to conduct adaptive bug fixing and generate patches with minimal modifications have seldom been investigated. To bridge this gap, we first introduce a novel task, namely AdaPR (Adaptive Program Repair). We then propose a two-stage approach AdaPatcher (Adaptive Patch Generator) to enhance program repair while maintaining the consistency. In the first stage, we utilize a Bug Locator with self-debug learning to accurately pinpoint bug locations. In the second stage, we train a Program Modifier to ensure consistency between the post-modified fixed code and the pre-modified buggy code. The Program Modifier is enhanced with a location-aware repair learning strategy to generate patches based on identified buggy lines, a hybrid training strategy for selective reference and an adaptive preference learning to prioritize fewer changes. The experimental results show that our approach outperforms a set of baselines by a large margin, validating the effectiveness of our two-stage framework for the newly proposed AdaPR task.
AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing Software Vulnerabilities
Many ML-based approaches have been proposed to automatically detect, localize, and repair software vulnerabilities. While ML-based methods are more effective than program analysis-based vulnerability analysis tools, few have been integrated into modern IDEs, hindering practical adoption. To bridge this critical gap, we propose AIBugHunter, a novel ML-based software vulnerability analysis tool for C/C++ languages that is integrated into Visual Studio Code. AIBugHunter helps software developers to achieve real-time vulnerability detection, explanation, and repairs during programming. In particular, AIBugHunter scans through developers' source code to (1) locate vulnerabilities, (2) identify vulnerability types, (3) estimate vulnerability severity, and (4) suggest vulnerability repairs. In this article, we propose a novel multi-objective optimization (MOO)-based vulnerability classification approach and a transformer-based estimation approach to help AIBugHunter accurately identify vulnerability types and estimate severity. Our empirical experiments on a large dataset consisting of 188K+ C/C++ functions confirm that our proposed approaches are more accurate than other state-of-the-art baseline methods for vulnerability classification and estimation. Furthermore, we conduct qualitative evaluations including a survey study and a user study to obtain software practitioners' perceptions of our AIBugHunter tool and assess the impact that AIBugHunter may have on developers' productivity in security aspects. Our survey study shows that our AIBugHunter is perceived as useful where 90% of the participants consider adopting our AIBugHunter. Last but not least, our user study shows that our AIBugHunter could possibly enhance developers' productivity in combating cybersecurity issues during software development.
Auto-labelling of Bug Report using Natural Language Processing
The exercise of detecting similar bug reports in bug tracking systems is known as duplicate bug report detection. Having prior knowledge of a bug report's existence reduces efforts put into debugging problems and identifying the root cause. Rule and Query-based solutions recommend a long list of potential similar bug reports with no clear ranking. In addition, triage engineers are less motivated to spend time going through an extensive list. Consequently, this deters the use of duplicate bug report retrieval solutions. In this paper, we have proposed a solution using a combination of NLP techniques. Our approach considers unstructured and structured attributes of a bug report like summary, description and severity, impacted products, platforms, categories, etc. It uses a custom data transformer, a deep neural network, and a non-generalizing machine learning method to retrieve existing identical bug reports. We have performed numerous experiments with significant data sources containing thousands of bug reports and showcased that the proposed solution achieves a high retrieval accuracy of 70% for recall@5.
Multi-Task Program Error Repair and Explanatory Diagnosis
Program errors can occur in any type of programming, and can manifest in a variety of ways, such as unexpected output, crashes, or performance issues. And program error diagnosis can often be too abstract or technical for developers to understand, especially for beginners. The goal of this paper is to present a novel machine-learning approach for Multi-task Program Error Repair and Explanatory Diagnosis (mPRED). A pre-trained language model is used to encode the source code, and a downstream model is specifically designed to identify and repair errors. Programs and test cases will be augmented and optimized from several perspectives. Additionally, our approach incorporates a "chain of thoughts" method, which enables the models to produce intermediate reasoning explanations before providing the final correction. To aid in visualizing and analyzing the program structure, we use a graph neural network for program structure visualization. Overall, our approach offers a promising approach for repairing program errors across different programming languages and providing helpful explanations to programmers.
A Deep Dive into Large Language Models for Automated Bug Localization and Repair
Large language models (LLMs) have shown impressive effectiveness in various software engineering tasks, including automated program repair (APR). In this study, we take a deep dive into automated bug fixing utilizing LLMs. In contrast to many deep learning-based APR methods that assume known bug locations, rely on line-level localization tools, or address bug prediction and fixing in one step, our approach uniquely employs LLMs to predict bug location at the token level and subsequently utilizes them for bug fixing. This methodological separation of bug localization and fixing using different LLMs enables effective integration of diverse contextual information and improved incorporation of inductive biases. We introduce Toggle: Token-Granulated Bug Localization and Repair, a comprehensive program repair framework that integrates a bug localization model, an adjustment unit, and a bug-fixing model. Toggle takes a buggy function as input and generates a complete corrected function. We investigate various styles of prompting to the bug fixing model to identify the most effective prompts that better utilize the inductive bias and significantly outperform others. Toggle achieves the new state-of-the-art (SOTA) performance on the CodeXGLUE code refinement benchmark, and exhibits better and comparable performance on several other widely-used APR datasets, including Defects4J.
Repair Is Nearly Generation: Multilingual Program Repair with LLMs
Most programmers make mistakes when writing code. Some of these mistakes are small and require few edits to the original program -- a class of errors recently termed last mile mistakes. These errors break the flow for experienced developers and can stump novice programmers. Existing automated repair techniques targeting this class of errors are language-specific and do not easily carry over to new languages. Transferring symbolic approaches requires substantial engineering and neural approaches require data and retraining. We introduce RING, a multilingual repair engine powered by a large language model trained on code (LLMC) such as Codex. Such a multilingual engine enables a flipped model for programming assistance, one where the programmer writes code and the AI assistance suggests fixes, compared to traditional code suggestion technology. Taking inspiration from the way programmers manually fix bugs, we show that a prompt-based strategy that conceptualizes repair as localization, transformation, and candidate ranking, can successfully repair programs in multiple languages with minimal effort. We present the first results for such a multilingual repair engine by evaluating on 6 different languages and comparing performance to language-specific repair engines. We show that RING can outperform language-specific repair engines for three of these languages.
WELL: Applying Bug Detectors to Bug Localization via Weakly Supervised Learning
Bug localization, which is used to help programmers identify the location of bugs in source code, is an essential task in software development. Researchers have already made efforts to harness the powerful deep learning (DL) techniques to automate it. However, training bug localization model is usually challenging because it requires a large quantity of data labeled with the bug's exact location, which is difficult and time-consuming to collect. By contrast, obtaining bug detection data with binary labels of whether there is a bug in the source code is much simpler. This paper proposes a WEakly supervised bug LocaLization (WELL) method, which only uses the bug detection data with binary labels to train a bug localization model. With CodeBERT finetuned on the buggy-or-not binary labeled data, WELL can address bug localization in a weakly supervised manner. The evaluations on three method-level synthetic datasets and one file-level real-world dataset show that WELL is significantly better than the existing SOTA model in typical bug localization tasks such as variable misuse and other programming bugs.
Agent That Debugs: Dynamic State-Guided Vulnerability Repair
In recent years, more vulnerabilities have been discovered every day, while manual vulnerability repair requires specialized knowledge and is time-consuming. As a result, many detected or even published vulnerabilities remain unpatched, thereby increasing the exposure of software systems to attacks. Recent advancements in agents based on Large Language Models have demonstrated their increasing capabilities in code understanding and generation, which can be promising to achieve automated vulnerability repair. However, the effectiveness of agents based on static information retrieval is still not sufficient for patch generation. To address the challenge, we propose a program repair agent called VulDebugger that fully utilizes both static and dynamic context, and it debugs programs in a manner akin to humans. The agent inspects the actual state of the program via the debugger and infers expected states via constraints that need to be satisfied. By continuously comparing the actual state with the expected state, it deeply understands the root causes of the vulnerabilities and ultimately accomplishes repairs. We experimentally evaluated VulDebugger on 50 real-life projects. With 60.00% successfully fixed, VulDebugger significantly outperforms state-of-the-art approaches for vulnerability repair.
GitBug-Java: A Reproducible Benchmark of Recent Java Bugs
Bug-fix benchmarks are essential for evaluating methodologies in automatic program repair (APR) and fault localization (FL). However, existing benchmarks, exemplified by Defects4J, need to evolve to incorporate recent bug-fixes aligned with contemporary development practices. Moreover, reproducibility, a key scientific principle, has been lacking in bug-fix benchmarks. To address these gaps, we present GitBug-Java, a reproducible benchmark of recent Java bugs. GitBug-Java features 199 bugs extracted from the 2023 commit history of 55 notable open-source repositories. The methodology for building GitBug-Java ensures the preservation of bug-fixes in fully-reproducible environments. We publish GitBug-Java at https://github.com/gitbugactions/gitbug-java.
B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests
Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.
AsserT5: Test Assertion Generation Using a Fine-Tuned Code Language Model
Writing good software tests can be challenging, therefore approaches that support developers are desirable. While generating complete tests automatically is such an approach commonly proposed in research, developers may already have specific test scenarios in mind and thus just require help in selecting the most suitable test assertions for these scenarios. This can be done using deep learning models to predict assertions for given test code. Prior research on assertion generation trained these models specifically for the task, raising the question how much the use of larger models pre-trained on code that have emerged since then can improve their performance. In particular, while abstracting identifiers has been shown to improve specifically trained models, it remains unclear whether this also generalises to models pre-trained on non-abstracted code. Finally, even though prior work demonstrated high accuracy it remains unclear how this translates into the effectiveness of the assertions at their intended application -- finding faults. To shed light on these open questions, in this paper we propose AsserT5, a new model based on the pre-trained CodeT5 model, and use this to empirically study assertion generation. We find that the abstraction and the inclusion of the focal method are useful also for a fine-tuned pre-trained model, resulting in test assertions that match the ground truth assertions precisely in up to 59.5\% of cases, more than twice as precise as prior models. However, evaluation on real bugs from the Defects4J dataset shows that out of 138 bugs detectable with assertions in real-world projects, AsserT5 was only able to suggest fault-finding assertions for 33, indicating the need for further improvements.
CURE: Code-Aware Neural Machine Translation for Automatic Program Repair
Automatic program repair (APR) is crucial to improve software reliability. Recently, neural machine translation (NMT) techniques have been used to fix software bugs automatically. While promising, these approaches have two major limitations. Their search space often does not contain the correct fix, and their search strategy ignores software knowledge such as strict code syntax. Due to these limitations, existing NMT-based techniques underperform the best template-based approaches. We propose CURE, a new NMT-based APR technique with three major novelties. First, CURE pre-trains a programming language (PL) model on a large software codebase to learn developer-like source code before the APR task. Second, CURE designs a new code-aware search strategy that finds more correct fixes by focusing on compilable patches and patches that are close in length to the buggy code. Finally, CURE uses a subword tokenization technique to generate a smaller search space that contains more correct fixes. Our evaluation on two widely-used benchmarks shows that CURE correctly fixes 57 Defects4J bugs and 26 QuixBugs bugs, outperforming all existing APR techniques on both benchmarks.
Searching by Code: a New SearchBySnippet Dataset and SnippeR Retrieval Model for Searching by Code Snippets
Code search is an important task that has seen many developments in recent years. However, previous attempts have mostly considered the problem of searching for code by a text query. We argue that using a code snippet (and possibly an associated traceback) as a query and looking for answers with bugfixing instructions and code samples is a natural use case that is not covered by existing approaches. Moreover, existing datasets use comments extracted from code rather than full-text descriptions as text, making them unsuitable for this use case. We present a new SearchBySnippet dataset implementing the search-by-code use case based on StackOverflow data; it turns out that in this setting, existing architectures fall short of the simplest BM25 baseline even after fine-tuning. We present a new single encoder model SnippeR that outperforms several strong baselines on the SearchBySnippet dataset with a result of 0.451 Recall@10; we propose the SearchBySnippet dataset and SnippeR as a new important benchmark for code search evaluation.
The Impact of Program Reduction on Automated Program Repair
Correcting bugs using modern Automated Program Repair (APR) can be both time-consuming and resource-expensive. We describe a program repair approach that aims to improve the scalability of modern APR tools. The approach leverages program reduction in the form of program slicing to eliminate code irrelevant to fixing the bug, which improves the APR tool's overall performance. We investigate slicing's impact on all three phases of the repair process: fault localization, patch generation, and patch validation. Our empirical exploration finds that the proposed approach, on average, enhances the repair ability of the TBar APR tool, but we also discovered a few cases where it was less successful. Specifically, on examples from the widely used Defects4J dataset, we obtain a substantial reduction in median repair time, which falls from 80 minutes to just under 18 minutes. We conclude that program reduction can improve the performance of APR without degrading repair quality, but this improvement is not universal. A replication package is available via Zenodo at https://doi.org/10.5281/zenodo.13074333. Keywords: automated program repair, dynamic program slicing, fault localization, test-suite reduction, hybrid techniques.
Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps
In software development, bug report reproduction is a challenging task. This paper introduces ReBL, a novel feedback-driven approach that leverages GPT-4, a large-scale language model, to automatically reproduce Android bug reports. Unlike traditional methods, ReBL bypasses the use of Step to Reproduce (S2R) entities. Instead, it leverages the entire textual bug report and employs innovative prompts to enhance GPT's contextual reasoning. This approach is more flexible and context-aware than the traditional step-by-step entity matching approach, resulting in improved accuracy and effectiveness. In addition to handling crash reports, ReBL has the capability of handling non-crash bug reports. Our evaluation of 96 Android bug reports (73 crash and 23 non-crash) demonstrates that ReBL successfully reproduced 90.63% of these reports, averaging only 74.98 seconds per bug report. Additionally, ReBL outperformed three existing tools in both success rate and speed.
Why are Some Bugs Non-Reproducible? An Empirical Investigation using Data Fusion
Software developers attempt to reproduce software bugs to understand their erroneous behaviours and to fix them. Unfortunately, they often fail to reproduce (or fix) them, which leads to faulty, unreliable software systems. However, to date, only a little research has been done to better understand what makes the software bugs non-reproducible. In this paper, we conduct a multimodal study to better understand the non-reproducibility of software bugs. First, we perform an empirical study using 576 non-reproducible bug reports from two popular software systems (Firefox, Eclipse) and identify 11 key factors that might lead a reported bug to non-reproducibility. Second, we conduct a user study involving 13 professional developers where we investigate how the developers cope with non-reproducible bugs. We found that they either close these bugs or solicit for further information, which involves long deliberations and counter-productive manual searches. Third, we offer several actionable insights on how to avoid non-reproducibility (e.g., false-positive bug report detector) and improve reproducibility of the reported bugs (e.g., sandbox for bug reproduction) by combining our analyses from multiple studies (e.g., empirical study, developer study).
Large Language Models of Code Fail at Completing Code with Potential Bugs
Large language models of code (Code-LLMs) have recently brought tremendous advances to code completion, a fundamental feature of programming assistance and code intelligence. However, most existing works ignore the possible presence of bugs in the code context for generation, which are inevitable in software development. Therefore, we introduce and study the buggy-code completion problem, inspired by the realistic scenario of real-time code suggestion where the code context contains potential bugs -- anti-patterns that can become bugs in the completed program. To systematically study the task, we introduce two datasets: one with synthetic bugs derived from semantics-altering operator changes (buggy-HumanEval) and one with realistic bugs derived from user submissions to coding problems (buggy-FixEval). We find that the presence of potential bugs significantly degrades the generation performance of the high-performing Code-LLMs. For instance, the passing rates of CodeGen-2B-mono on test cases of buggy-HumanEval drop more than 50% given a single potential bug in the context. Finally, we investigate several post-hoc methods for mitigating the adverse effect of potential bugs and find that there remains a large gap in post-mitigation performance.
Which Prompting Technique Should I Use? An Empirical Investigation of Prompting Techniques for Software Engineering Tasks
A growing variety of prompt engineering techniques has been proposed for Large Language Models (LLMs), yet systematic evaluation of each technique on individual software engineering (SE) tasks remains underexplored. In this study, we present a systematic evaluation of 14 established prompt techniques across 10 SE tasks using four LLM models. As identified in the prior literature, the selected prompting techniques span six core dimensions (Zero-Shot, Few-Shot, Thought Generation, Ensembling, Self-Criticism, and Decomposition). They are evaluated on tasks such as code generation, bug fixing, and code-oriented question answering, to name a few. Our results show which prompting techniques are most effective for SE tasks requiring complex logic and intensive reasoning versus those that rely more on contextual understanding and example-driven scenarios. We also analyze correlations between the linguistic characteristics of prompts and the factors that contribute to the effectiveness of prompting techniques in enhancing performance on SE tasks. Additionally, we report the time and token consumption for each prompting technique when applied to a specific task and model, offering guidance for practitioners in selecting the optimal prompting technique for their use cases.
BigIssue: A Realistic Bug Localization Benchmark
As machine learning tools progress, the inevitable question arises: How can machine learning help us write better code? With significant progress being achieved in natural language processing with models like GPT-3 and Bert, the applications of natural language processing techniques to code are starting to be explored. Most of the research has been focused on automatic program repair (APR), and while the results on synthetic or highly filtered datasets are promising, such models are hard to apply in real-world scenarios because of inadequate bug localization. We propose BigIssue: a benchmark for realistic bug localization. The goal of the benchmark is two-fold. We provide (1) a general benchmark with a diversity of real and synthetic Java bugs and (2) a motivation to improve bug localization capabilities of models through attention to the full repository context. With the introduction of BigIssue, we hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
Fixing 7,400 Bugs for 1$: Cheap Crash-Site Program Repair
The rapid advancement of bug-finding techniques has led to the discovery of more vulnerabilities than developers can reasonably fix, creating an urgent need for effective Automated Program Repair (APR) methods. However, the complexity of modern bugs often makes precise root cause analysis difficult and unreliable. To address this challenge, we propose crash-site repair to simplify the repair task while still mitigating the risk of exploitation. In addition, we introduce a template-guided patch generation approach that significantly reduces the token cost of Large Language Models (LLMs) while maintaining both efficiency and effectiveness. We implement our prototype system, WILLIAMT, and evaluate it against state-of-the-art APR tools. Our results show that, when combined with the top-performing agent CodeRover-S, WILLIAMT reduces token cost by 45.9% and increases the bug-fixing rate to 73.5% (+29.6%) on ARVO, a ground-truth open source software vulnerabilities benchmark. Furthermore, we demonstrate that WILLIAMT can function effectively even without access to frontier LLMs: even a local model running on a Mac M4 Mini achieves a reasonable repair rate. These findings highlight the broad applicability and scalability of WILLIAMT.
CREF: An LLM-based Conversational Software Repair Framework for Programming Tutors
Program repair techniques offer cost-saving benefits for debugging within software development and programming education scenarios. With the proven effectiveness of Large Language Models (LLMs) in code-related tasks, researchers have explored their potential for program repair. However, it is crucial to recognize that existing repair benchmarks may have influenced LLM training data, potentially causing data leakage. To evaluate LLMs' realistic repair capabilities, (1) we introduce an extensive, non-crawled benchmark, referred to as TutorCode, comprising 1,239 C++ defect codes and associated information such as tutor guidance, solution description, failing test cases, and the corrected code. Our work assesses the repair performance of 12 LLMs on TutorCode, measuring repair correctness (TOP-5 and AVG-5) and patch precision (RPSR). (2) We then provide a comprehensive investigation into which types of extra information can help LLMs improve their performance in repairing defects. Among these types, tutor guidance was found to be the most effective information in enhancing LLM repair capabilities. To fully harness LLMs' conversational capabilities and the benefits of augmented information, (3) we introduce a novel conversational semi-automatic repair framework CREF assisting human tutor. It demonstrates a remarkable AVG-5 improvement of 17.2%-24.6% compared to the baseline, achieving an impressive AVG-5 of 76.6% when utilizing GPT-4. These results highlight the potential for enhancing LLMs' repair capabilities through interactions with tutors and historical conversations involving incorrect responses. The successful application of CREF in a real-world educational setting demonstrates its effectiveness in reducing tutors' workload and improving students' learning experience, while also showcasing its promise for facilitating other software engineering tasks, such as code review.
Why Stop at One Error? Benchmarking LLMs as Data Science Code Debuggers for Multi-Hop and Multi-Bug Errors
LLMs are transforming software development, yet current code generation and code repair benchmarks mainly assess syntactic and functional correctness in simple, single-error cases. LLMs' capabilities to autonomously find and fix runtime logical errors in complex data science code remain largely unexplored. To address this gap, we introduce DSDBench: the Data Science Debugging Benchmark, the first benchmark for systematic evaluation of LLMs on multi-hop error tracing and multi-bug detection in data science code debugging. DSDBench adapts datasets from existing data science task benchmarks, such as DABench and MatPlotBench, featuring realistic data science debugging tasks with automatically synthesized multi-hop, multi-bug code snippets. DSDBench includes 1,117 annotated samples with 741 cause-effect error pairs and runtime error messages. Evaluations of state-of-the-art LLMs on DSDBench show significant performance gaps, highlighting challenges in debugging logical runtime errors in data science code. DSDBench offers a crucial resource to evaluate and improve LLMs' debugging and reasoning capabilities, enabling more reliable AI-assisted data science in the future. DSDBench is publicly available at github.com/KevinCL16/DSDBench.
Exploring Direct Instruction and Summary-Mediated Prompting in LLM-Assisted Code Modification
This paper presents a study of using large language models (LLMs) in modifying existing code. While LLMs for generating code have been widely studied, their role in code modification remains less understood. Although "prompting" serves as the primary interface for developers to communicate intents to LLMs, constructing effective prompts for code modification introduces challenges different from generation. Prior work suggests that natural language summaries may help scaffold this process, yet such approaches have been validated primarily in narrow domains like SQL rewriting. This study investigates two prompting strategies for LLM-assisted code modification: Direct Instruction Prompting, where developers describe changes explicitly in free-form language, and Summary-Mediated Prompting, where changes are made by editing the generated summaries of the code. We conducted an exploratory study with 15 developers who completed modification tasks using both techniques across multiple scenarios. Our findings suggest that developers followed an iterative workflow: understanding the code, localizing the edit, and validating outputs through execution or semantic reasoning. Each prompting strategy presented trade-offs: direct instruction prompting was more flexible and easier to specify, while summary-mediated prompting supported comprehension, prompt scaffolding, and control. Developers' choice of strategy was shaped by task goals and context, including urgency, maintainability, learning intent, and code familiarity. These findings highlight the need for more usable prompt interactions, including adjustable summary granularity, reliable summary-code traceability, and consistency in generated summaries.
Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation
Bug reports contain the information developers need to triage and fix software bugs. However, unclear, incomplete, or ambiguous information may lead to delays and excessive manual effort spent on bug triage and resolution. In this paper, we explore whether Instruction fine-tuned Large Language Models (LLMs) can automatically transform casual, unstructured bug reports into high-quality, structured bug reports adhering to a standard template. We evaluate three open-source instruction-tuned LLMs (Qwen 2.5, Mistral, and Llama 3.2) against ChatGPT-4o, measuring performance on established metrics such as CTQRS, ROUGE, METEOR, and SBERT. Our experiments show that fine-tuned Qwen 2.5 achieves a CTQRS score of 77%, outperforming both fine-tuned Mistral (71%), Llama 3.2 (63%) and ChatGPT in 3-shot learning (75%). Further analysis reveals that Llama 3.2 shows higher accuracy of detecting missing fields particularly Expected Behavior and Actual Behavior, while Qwen 2.5 demonstrates superior performance in capturing Steps-to-Reproduce, with an F1 score of 76%. Additional testing of the models on other popular projects (e.g., Eclipse, GCC) demonstrates that our approach generalizes well, achieving up to 70% CTQRS in unseen projects' bug reports. These findings highlight the potential of instruction fine-tuning in automating structured bug report generation, reducing manual effort for developers and streamlining the software maintenance process.
SWE-SQL: Illuminating LLM Pathways to Solve User SQL Issues in Real-World Applications
Resolution of complex SQL issues persists as a significant bottleneck in real-world database applications. Current Large Language Models (LLMs), while adept at text-to-SQL translation, have not been rigorously evaluated on the more challenging task of debugging SQL issues. To address this gap, we introduce BIRD-CRITIC, a new SQL issue debugging benchmark comprising 530 PostgreSQL tasks (BIRD-CRITIC-PG) and 570 multi-dialect tasks (BIRD-CRITIC-Multi), distilled from authentic user issues and replayed within new environments to facilitate rigorous evaluation. Baseline evaluations underscore the task's complexity, with the leading reasoning model O3-Mini achieving only 38.87% success rate on BIRD-CRITIC-PG and 33.33% on BIRD-CRITIC-Multi. Meanwhile, advancing open-source models for database tasks is crucial for empowering local development while safeguarding data privacy. Therefore, we present Six-Gym (Sql-fIX-Gym), a training environment for elevating open-source model capabilities for SQL issue debugging. This environment leverages SQL-Rewind strategy, which automatically generates executable issue-solution datasets by reverse-engineering issues from verified SQLs. However, popular trajectory-based fine-tuning methods do not explore substantial supervisory signals. We further propose f-Plan Boosting, which extracts high-level debugging plans from SQL solutions, enabling teacher LLMs to produce 73.7% more successful trajectories for training. We integrate these components into an open-source agent, Bird-Fixer. Based on Qwen-2.5-Coder-14B, Bird-Fixer achieves 38.11% success rate on BIRD-CRITIC-PG and 29.65% on BIRD-CRITIC-Multi, surpassing leading proprietary models such as Claude-3.7-Sonnet and GPT-4.1, marking a significant step toward democratizing sophisticated SQL-debugging capabilities. The leaderboard and source code are available: https://bird-critic.github.io/
TRAIL: Trace Reasoning and Agentic Issue Localization
The increasing adoption of agentic workflows across diverse domains brings a critical need to scalably and systematically evaluate the complex traces these systems generate. Current evaluation methods depend on manual, domain-specific human analysis of lengthy workflow traces - an approach that does not scale with the growing complexity and volume of agentic outputs. Error analysis in these settings is further complicated by the interplay of external tool outputs and language model reasoning, making it more challenging than traditional software debugging. In this work, we (1) articulate the need for robust and dynamic evaluation methods for agentic workflow traces, (2) introduce a formal taxonomy of error types encountered in agentic systems, and (3) present a set of 148 large human-annotated traces (TRAIL) constructed using this taxonomy and grounded in established agentic benchmarks. To ensure ecological validity, we curate traces from both single and multi-agent systems, focusing on real-world applications such as software engineering and open-world information retrieval. Our evaluations reveal that modern long context LLMs perform poorly at trace debugging, with the best Gemini-2.5-pro model scoring a mere 11% on TRAIL. Our dataset and code are made publicly available to support and accelerate future research in scalable evaluation for agentic workflows.
Prompting LLMs for Code Editing: Struggles and Remedies
Large Language Models (LLMs) are rapidly transforming software engineering, with coding assistants embedded in an IDE becoming increasingly prevalent. While research has focused on improving the tools and understanding developer perceptions, a critical gap exists in understanding how developers actually use these tools in their daily workflows, and, crucially, where they struggle. This paper addresses part of this gap through a multi-phased investigation of developer interactions with an LLM-powered code editing and transformation feature, Transform Code, in an IDE widely used at Google. First, we analyze telemetry logs of the feature usage, revealing that frequent re-prompting can be an indicator of developer struggles with using Transform Code. Second, we conduct a qualitative analysis of unsatisfactory requests, identifying five key categories of information often missing from developer prompts. Finally, based on these findings, we propose and evaluate a tool, AutoPrompter, for automatically improving prompts by inferring missing information from the surrounding code context, leading to a 27% improvement in edit correctness on our test set.
An Empirical Study on LLM-based Agents for Automated Bug Fixing
Large language models (LLMs) and LLM-based Agents have been applied to fix bugs automatically, demonstrating the capability in addressing software defects by engaging in development environment interaction, iterative validation and code modification. However, systematic analysis of these agent and non-agent systems remain limited, particularly regarding performance variations among top-performing ones. In this paper, we examine seven proprietary and open-source systems on the SWE-bench Lite benchmark for automated bug fixing. We first assess each system's overall performance, noting instances solvable by all or none of these sytems, and explore why some instances are uniquely solved by specific system types. We also compare fault localization accuracy at file and line levels and evaluate bug reproduction capabilities, identifying instances solvable only through dynamic reproduction. Through analysis, we concluded that further optimization is needed in both the LLM itself and the design of Agentic flow to improve the effectiveness of the Agent in bug fixing.
A Comparative Study of Text Embedding Models for Semantic Text Similarity in Bug Reports
Bug reports are an essential aspect of software development, and it is crucial to identify and resolve them quickly to ensure the consistent functioning of software systems. Retrieving similar bug reports from an existing database can help reduce the time and effort required to resolve bugs. In this paper, we compared the effectiveness of semantic textual similarity methods for retrieving similar bug reports based on a similarity score. We explored several embedding models such as TF-IDF (Baseline), FastText, Gensim, BERT, and ADA. We used the Software Defects Data containing bug reports for various software projects to evaluate the performance of these models. Our experimental results showed that BERT generally outperformed the rest of the models regarding recall, followed by ADA, Gensim, FastText, and TFIDF. Our study provides insights into the effectiveness of different embedding methods for retrieving similar bug reports and highlights the impact of selecting the appropriate one for this task. Our code is available on GitHub.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
Effective Test Generation Using Pre-trained Large Language Models and Mutation Testing
One of the critical phases in software development is software testing. Testing helps with identifying potential bugs and reducing maintenance costs. The goal of automated test generation tools is to ease the development of tests by suggesting efficient bug-revealing tests. Recently, researchers have leveraged Large Language Models (LLMs) of code to generate unit tests. While the code coverage of generated tests was usually assessed, the literature has acknowledged that the coverage is weakly correlated with the efficiency of tests in bug detection. To improve over this limitation, in this paper, we introduce MuTAP for improving the effectiveness of test cases generated by LLMs in terms of revealing bugs by leveraging mutation testing. Our goal is achieved by augmenting prompts with surviving mutants, as those mutants highlight the limitations of test cases in detecting bugs. MuTAP is capable of generating effective test cases in the absence of natural language descriptions of the Program Under Test (PUTs). We employ different LLMs within MuTAP and evaluate their performance on different benchmarks. Our results show that our proposed method is able to detect up to 28% more faulty human-written code snippets. Among these, 17% remained undetected by both the current state-of-the-art fully automated test generation tool (i.e., Pynguin) and zero-shot/few-shot learning approaches on LLMs. Furthermore, MuTAP achieves a Mutation Score (MS) of 93.57% on synthetic buggy code, outperforming all other approaches in our evaluation. Our findings suggest that although LLMs can serve as a useful tool to generate test cases, they require specific post-processing steps to enhance the effectiveness of the generated test cases which may suffer from syntactic or functional errors and may be ineffective in detecting certain types of bugs and testing corner cases PUTs.
An Analysis of the Automatic Bug Fixing Performance of ChatGPT
To support software developers in finding and fixing software bugs, several automated program repair techniques have been introduced. Given a test suite, standard methods usually either synthesize a repair, or navigate a search space of software edits to find test-suite passing variants. Recent program repair methods are based on deep learning approaches. One of these novel methods, which is not primarily intended for automated program repair, but is still suitable for it, is ChatGPT. The bug fixing performance of ChatGPT, however, is so far unclear. Therefore, in this paper we evaluate ChatGPT on the standard bug fixing benchmark set, QuixBugs, and compare the performance with the results of several other approaches reported in the literature. We find that ChatGPT's bug fixing performance is competitive to the common deep learning approaches CoCoNut and Codex and notably better than the results reported for the standard program repair approaches. In contrast to previous approaches, ChatGPT offers a dialogue system through which further information, e.g., the expected output for a certain input or an observed error message, can be entered. By providing such hints to ChatGPT, its success rate can be further increased, fixing 31 out of 40 bugs, outperforming state-of-the-art.
TRACED: Execution-aware Pre-training for Source Code
Most existing pre-trained language models for source code focus on learning the static code text, typically augmented with static code structures (abstract syntax tree, dependency graphs, etc.). However, program semantics will not be fully exposed before the real execution. Without an understanding of the program execution, statically pre-trained models fail to comprehensively capture the dynamic code properties, such as the branch coverage and the runtime variable values, and they are consequently less effective at code understanding tasks, such as retrieving semantic clones and detecting software vulnerabilities. To close the gap between the static nature of language models and the dynamic characteristics of programs, we introduce TRACED, an execution-aware pre-training strategy for source code. Specifically, we pre-train code language models with a combination of source code, executable inputs, and corresponding execution traces. Our goal is to teach code models the complicated execution logic during the pre-training, enabling the model to statically estimate the dynamic code properties without repeatedly executing code during task-specific fine-tuning. To illustrate the effectiveness of our proposed approach, we fine-tune and evaluate TRACED on three downstream tasks: static execution estimation, clone retrieval, and vulnerability detection. The empirical results show that TRACED relatively improves the statically pre-trained code models by 12.4% for complete execution path prediction and by 25.2% for runtime variable value predictions. TRACED also significantly outperforms statically pre-trained models in clone retrieval and vulnerability detection across four public benchmarks.
On Distribution Shift in Learning-based Bug Detectors
Deep learning has recently achieved initial success in program analysis tasks such as bug detection. Lacking real bugs, most existing works construct training and test data by injecting synthetic bugs into correct programs. Despite achieving high test accuracy (e.g., 90%), the resulting bug detectors are found to be surprisingly unusable in practice, i.e., <10% precision when used to scan real software repositories. In this work, we argue that this massive performance difference is caused by a distribution shift, i.e., a fundamental mismatch between the real bug distribution and the synthetic bug distribution used to train and evaluate the detectors. To address this key challenge, we propose to train a bug detector in two phases, first on a synthetic bug distribution to adapt the model to the bug detection domain, and then on a real bug distribution to drive the model towards the real distribution. During these two phases, we leverage a multi-task hierarchy, focal loss, and contrastive learning to further boost performance. We evaluate our approach extensively on three widely studied bug types, for which we construct new datasets carefully designed to capture the real bug distribution. The results demonstrate that our approach is practically effective and successfully mitigates the distribution shift: our learned detectors are highly performant on both our test set and the latest version of open source repositories. Our code, datasets, and models are publicly available at https://github.com/eth-sri/learning-real-bug-detector.
Can LLM Generate Regression Tests for Software Commits?
Large Language Models (LLMs) have shown tremendous promise in automated software engineering. In this paper, we investigate the opportunities of LLMs for automatic regression test generation for programs that take highly structured, human-readable inputs, such as XML parsers or JavaScript interpreters. Concretely, we explore the following regression test generation scenarios for such programs that have so far been difficult to test automatically in the absence of corresponding input grammars: bullet Bug finding. Given a code change (e.g., a commit or pull request), our LLM-based approach generates a test case with the objective of revealing any bugs that might be introduced if that change is applied. bullet Patch testing. Given a patch, our LLM-based approach generates a test case that fails before but passes after the patch. This test can be added to the regression test suite to catch similar bugs in the future. We implement Cleverest, a feedback-directed, zero-shot LLM-based regression test generation technique, and evaluate its effectiveness on 22 commits to three subject programs: Mujs, Libxml2, and Poppler. For programs using more human-readable file formats, like XML or JavaScript, we found Cleverest performed very well. It generated easy-to-understand bug-revealing or bug-reproduction test cases for the majority of commits in just under three minutes -- even when only the code diff or commit message (unless it was too vague) was given. For programs with more compact file formats, like PDF, as expected, it struggled to generate effective test cases. However, the LLM-supplied test cases are not very far from becoming effective (e.g., when used as a seed by a greybox fuzzer or as a starting point by the developer).
Tool-integrated Reinforcement Learning for Repo Deep Search
Issue localization, the process of identifying code locations that need modification to resolve software issues, is a critical yet challenging task in software development. The semantic gap between natural language issue descriptions and faulty code requires complex multi-hop reasoning through code dependencies. Existing LLM-based agents attempt to address this by integrating repository retrieval tools. However, this transforms issue localization into a demanding task we call Repo Deep Search, which requires the LLM to effectively utilize various repository retrieval tools throughout a multi-step reasoning and navigation process. To tackle this challenge, we present ToolTrain, a two-stage tool-integrated training framework combining rejection-sampled supervised fine-tuning and tool-integrated reinforcement learning to enhance LLMs' ability to use retrieval tools for issue localization. Experimental results show that ToolTrain-trained models achieve state-of-the-art performance, with our 32B model even surpassing Claude-3.7 on function-level localization. The results also show that improved localization performance translates to better end-to-end issue resolution performance. This further demonstrates that training for issue localization is a viable and effective strategy for improving automated software development.
Bugs in Large Language Models Generated Code: An Empirical Study
Large Language Models (LLMs) for code have gained significant attention recently. They can generate code in different programming languages based on provided prompts, fulfilling a long-lasting dream in Software Engineering (SE), i.e., automatic code generation. Similar to human-written code, LLM-generated code is prone to bugs, and these bugs have not yet been thoroughly examined by the community. Given the increasing adoption of LLM-based code generation tools (e.g., GitHub Copilot) in SE activities, it is critical to understand the characteristics of bugs contained in code generated by LLMs. This paper examines a sample of 333 bugs collected from code generated using three leading LLMs (i.e., CodeGen, PanGu-Coder, and Codex) and identifies the following 10 distinctive bug patterns: Misinterpretations, Syntax Error, Silly Mistake, Prompt-biased code, Missing Corner Case, Wrong Input Type, Hallucinated Object, Wrong Attribute, Incomplete Generation, and Non-Prompted Consideration. The bug patterns are presented in the form of a taxonomy. The identified bug patterns are validated using an online survey with 34 LLM practitioners and researchers. The surveyed participants generally asserted the significance and prevalence of the bug patterns. Researchers and practitioners can leverage these findings to develop effective quality assurance techniques for LLM-generated code. This study sheds light on the distinctive characteristics of LLM-generated code.
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.
Large Language Models are Pretty Good Zero-Shot Video Game Bug Detectors
Video game testing requires game-specific knowledge as well as common sense reasoning about the events in the game. While AI-driven agents can satisfy the first requirement, it is not yet possible to meet the second requirement automatically. Therefore, video game testing often still relies on manual testing, and human testers are required to play the game thoroughly to detect bugs. As a result, it is challenging to fully automate game testing. In this study, we explore the possibility of leveraging the zero-shot capabilities of large language models for video game bug detection. By formulating the bug detection problem as a question-answering task, we show that large language models can identify which event is buggy in a sequence of textual descriptions of events from a game. To this end, we introduce the GameBugDescriptions benchmark dataset, which consists of 167 buggy gameplay videos and a total of 334 question-answer pairs across 8 games. We extensively evaluate the performance of six models across the OPT and InstructGPT large language model families on our benchmark dataset. Our results show promising results for employing language models to detect video game bugs. With the proper prompting technique, we could achieve an accuracy of 70.66%, and on some video games, up to 78.94%. Our code, evaluation data and the benchmark can be found on https://asgaardlab.github.io/LLMxBugs
Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming
The integration of Large Language Models (LLMs) into Development Environments (IDEs) has become a focal point in modern software development. LLMs such as OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants. However, utilizing LLMs out of the box is unlikely to be optimal for any given scenario. Rather, each system requires the LLM to be honed to its set of heuristics to ensure the best performance. In this paper, we introduce the Copilot evaluation harness: a set of data and tools for evaluating LLM-guided IDE interactions, covering various programming scenarios and languages. We propose our metrics as a more robust and information-dense evaluation than previous state of the art evaluation systems. We design and compute both static and execution based success metrics for scenarios encompassing a wide range of developer tasks, including code generation from natural language (generate), documentation generation from code (doc), test case generation (test), bug-fixing (fix), and workspace understanding and query resolution (workspace). These success metrics are designed to evaluate the performance of LLMs within a given IDE and its respective parameter space. Our learnings from evaluating three common LLMs using these metrics can inform the development and validation of future scenarios in LLM guided IDEs.
ASSERTIFY: Utilizing Large Language Models to Generate Assertions for Production Code
Production assertions are statements embedded in the code to help developers validate their assumptions about the code. They assist developers in debugging, provide valuable documentation, and enhance code comprehension. Current research in this area primarily focuses on assertion generation for unit tests using techniques, such as static analysis and deep learning. While these techniques have shown promise, they fall short when it comes to generating production assertions, which serve a different purpose. This preprint addresses the gap by introducing Assertify, an automated end-to-end tool that leverages Large Language Models (LLMs) and prompt engineering with few-shot learning to generate production assertions. By creating context-rich prompts, the tool emulates the approach developers take when creating production assertions for their code. To evaluate our approach, we compiled a dataset of 2,810 methods by scraping 22 mature Java repositories from GitHub. Our experiments demonstrate the effectiveness of few-shot learning by producing assertions with an average ROUGE-L score of 0.526, indicating reasonably high structural similarity with the assertions written by developers. This research demonstrates the potential of LLMs in automating the generation of production assertions that resemble the original assertions.
D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using Differential Analysis
Static analysis tools are widely used for vulnerability detection as they understand programs with complex behavior and millions of lines of code. Despite their popularity, static analysis tools are known to generate an excess of false positives. The recent ability of Machine Learning models to understand programming languages opens new possibilities when applied to static analysis. However, existing datasets to train models for vulnerability identification suffer from multiple limitations such as limited bug context, limited size, and synthetic and unrealistic source code. We propose D2A, a differential analysis based approach to label issues reported by static analysis tools. The D2A dataset is built by analyzing version pairs from multiple open source projects. From each project, we select bug fixing commits and we run static analysis on the versions before and after such commits. If some issues detected in a before-commit version disappear in the corresponding after-commit version, they are very likely to be real bugs that got fixed by the commit. We use D2A to generate a large labeled dataset to train models for vulnerability identification. We show that the dataset can be used to build a classifier to identify possible false alarms among the issues reported by static analysis, hence helping developers prioritize and investigate potential true positives first.
STraceBERT: Source Code Retrieval using Semantic Application Traces
Software reverse engineering is an essential task in software engineering and security, but it can be a challenging process, especially for adversarial artifacts. To address this challenge, we present STraceBERT, a novel approach that utilizes a Java dynamic analysis tool to record calls to core Java libraries, and pretrain a BERT-style model on the recorded application traces for effective method source code retrieval from a candidate set. Our experiments demonstrate the effectiveness of STraceBERT in retrieving the source code compared to existing approaches. Our proposed approach offers a promising solution to the problem of code retrieval in software reverse engineering and opens up new avenues for further research in this area.
Too Few Bug Reports? Exploring Data Augmentation for Improved Changeset-based Bug Localization
Modern Deep Learning (DL) architectures based on transformers (e.g., BERT, RoBERTa) are exhibiting performance improvements across a number of natural language tasks. While such DL models have shown tremendous potential for use in software engineering applications, they are often hampered by insufficient training data. Particularly constrained are applications that require project-specific data, such as bug localization, which aims at recommending code to fix a newly submitted bug report. Deep learning models for bug localization require a substantial training set of fixed bug reports, which are at a limited quantity even in popular and actively developed software projects. In this paper, we examine the effect of using synthetic training data on transformer-based DL models that perform a more complex variant of bug localization, which has the goal of retrieving bug-inducing changesets for each bug report. To generate high-quality synthetic data, we propose novel data augmentation operators that act on different constituent components of bug reports. We also describe a data balancing strategy that aims to create a corpus of augmented bug reports that better reflects the entire source code base, because existing bug reports used as training data usually reference a small part of the code base.
Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation
Legacy software systems, written in outdated languages like MUMPS and mainframe assembly, pose challenges in efficiency, maintenance, staffing, and security. While LLMs offer promise for modernizing these systems, their ability to understand legacy languages is largely unknown. This paper investigates the utilization of LLMs to generate documentation for legacy code using two datasets: an electronic health records (EHR) system in MUMPS and open-source applications in IBM mainframe Assembly Language Code (ALC). We propose a prompting strategy for generating line-wise code comments and a rubric to evaluate their completeness, readability, usefulness, and hallucination. Our study assesses the correlation between human evaluations and automated metrics, such as code complexity and reference-based metrics. We find that LLM-generated comments for MUMPS and ALC are generally hallucination-free, complete, readable, and useful compared to ground-truth comments, though ALC poses challenges. However, no automated metrics strongly correlate with comment quality to predict or measure LLM performance. Our findings highlight the limitations of current automated measures and the need for better evaluation metrics for LLM-generated documentation in legacy systems.
Gradient-Based Program Repair: Fixing Bugs in Continuous Program Spaces
Automatic program repair seeks to generate correct code from buggy programs, with most approaches searching the correct program in a discrete, symbolic space of source code tokens. This symbolic search is fundamentally limited by its inability to directly reason about program behavior. We introduce Gradient-Based Program Repair (GBPR), a new paradigm that reframes program repair as continuous optimization in a differentiable numerical program space. Our core insight is to compile symbolic programs into differentiable numerical representations, enabling search in the numerical program space directly guided by program behavior. To evaluate GBPR, we present RaspBugs, a new benchmark of 1,466 buggy symbolic RASP programs and their respective numerical representations. Our experiments demonstrate that GBPR can effectively repair buggy symbolic programs by gradient-based optimization in the numerical program space, with convincing repair trajectories. To our knowledge, we are the first to state program repair as continuous optimization in a numerical program space. Our work establishes a new direction for program repair research, bridging two rich worlds: continuous optimization and program behavior.
CLIP meets GamePhysics: Towards bug identification in gameplay videos using zero-shot transfer learning
Gameplay videos contain rich information about how players interact with the game and how the game responds. Sharing gameplay videos on social media platforms, such as Reddit, has become a common practice for many players. Often, players will share gameplay videos that showcase video game bugs. Such gameplay videos are software artifacts that can be utilized for game testing, as they provide insight for bug analysis. Although large repositories of gameplay videos exist, parsing and mining them in an effective and structured fashion has still remained a big challenge. In this paper, we propose a search method that accepts any English text query as input to retrieve relevant videos from large repositories of gameplay videos. Our approach does not rely on any external information (such as video metadata); it works solely based on the content of the video. By leveraging the zero-shot transfer capabilities of the Contrastive Language-Image Pre-Training (CLIP) model, our approach does not require any data labeling or training. To evaluate our approach, we present the GamePhysics dataset consisting of 26,954 videos from 1,873 games, that were collected from the GamePhysics section on the Reddit website. Our approach shows promising results in our extensive analysis of simple queries, compound queries, and bug queries, indicating that our approach is useful for object and event detection in gameplay videos. An example application of our approach is as a gameplay video search engine to aid in reproducing video game bugs. Please visit the following link for the code and the data: https://asgaardlab.github.io/CLIPxGamePhysics/
Can GPT-O1 Kill All Bugs? An Evaluation of GPT-Family LLMs on QuixBugs
LLMs have long demonstrated remarkable effectiveness in automatic program repair (APR), with OpenAI's ChatGPT being one of the most widely used models in this domain. Through continuous iterations and upgrades of GPT-family models, their performance in fixing bugs has already reached state-of-the-art levels. However, there are few works comparing the effectiveness and variations of different versions of GPT-family models on APR. In this work, inspired by the recent public release of the GPT-o1 models, we conduct the first study to compare the effectiveness of different versions of the GPT-family models in APR. We evaluate the performance of the latest version of the GPT-family models (i.e., O1-preview and O1-mini), GPT-4o, and the historical version of ChatGPT on APR. We conduct an empirical study of the four GPT-family models against other LLMs and APR techniques on the QuixBugs benchmark from multiple evaluation perspectives, including repair success rate, repair cost, response length, and behavior patterns. The results demonstrate that O1's repair capability exceeds that of prior GPT-family models, successfully fixing all 40 bugs in the benchmark. Our work can serve as a foundation for further in-depth exploration of the applications of GPT-family models in APR.
What's Wrong with Your Code Generated by Large Language Models? An Extensive Study
The increasing development of large language models (LLMs) in code generation has drawn significant attention among researchers. To enhance LLM-based code generation ability, current efforts are predominantly directed towards collecting high-quality datasets and leveraging diverse training technologies. However, there is a notable lack of comprehensive studies examining the limitations and boundaries of these existing methods. To bridge this gap, we conducted an extensive empirical study evaluating the performance of three leading closed-source LLMs and four popular open-source LLMs on three commonly used benchmarks. Our investigation, which evaluated the length, cyclomatic complexity and API number of the generated code, revealed that these LLMs face challenges in generating successful code for more complex problems, and tend to produce code that is shorter yet more complicated as compared to canonical solutions. Additionally, we developed a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types. Furthermore, to better understand the performance of LLMs in real-world projects, we manually created a real-world benchmark comprising 140 code generation tasks. Our analysis highlights distinct differences in bug distributions between actual scenarios and existing benchmarks. Finally, we propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback. Experimental results demonstrate that our approach can significantly mitigate bugs and increase the passing rate by 29.2% after two iterations, indicating substantial potential for LLMs to handle more complex problems.
Automatic Program Repair with OpenAI's Codex: Evaluating QuixBugs
OpenAI's Codex, a GPT-3 like model trained on a large code corpus, has made headlines in and outside of academia. Given a short user-provided description, it is capable of synthesizing code snippets that are syntactically and semantically valid in most cases. In this work, we want to investigate whether Codex is able to localize and fix bugs, a task of central interest in the field of automated program repair. Our initial evaluation uses the multi-language QuixBugs benchmark (40 bugs in both Python and Java). We find that, despite not being trained for APR, Codex is surprisingly effective, and competitive with recent state of the art techniques. Our results also show that Codex is slightly more successful at repairing Python than Java.
How Far Can We Go with Practical Function-Level Program Repair?
Recently, multiple Automated Program Repair (APR) techniques based on Large Language Models (LLMs) have been proposed to enhance the repair performance. While these techniques mainly focus on the single-line or hunk-level repair, they face significant challenges in real-world application due to the limited repair task scope and costly statement-level fault localization. However, the more practical function-level APR, which broadens the scope of APR task to fix entire buggy functions and requires only cost-efficient function-level fault localization, remains underexplored. In this paper, we conduct the first comprehensive study of LLM-based function-level APR including investigating the effect of the few-shot learning mechanism and the auxiliary repair-relevant information. Specifically, we adopt six widely-studied LLMs and construct a benchmark in both the Defects4J 1.2 and 2.0 datasets. Our study demonstrates that LLMs with zero-shot learning are already powerful function-level APR techniques, while applying the few-shot learning mechanism leads to disparate repair performance. Moreover, we find that directly applying the auxiliary repair-relevant information to LLMs significantly increases function-level repair performance. Inspired by our findings, we propose an LLM-based function-level APR technique, namely SRepair, which adopts a dual-LLM framework to leverage the power of the auxiliary repair-relevant information for advancing the repair performance. The evaluation results demonstrate that SRepair can correctly fix 300 single-function bugs in the Defects4J dataset, largely surpassing all previous APR techniques by at least 85%, without the need for the costly statement-level fault location information. Furthermore, SRepair successfully fixes 32 multi-function bugs in the Defects4J dataset, which is the first time achieved by any APR technique ever to our best knowledge.
Impact of Code Context and Prompting Strategies on Automated Unit Test Generation with Modern General-Purpose Large Language Models
Generative AI is gaining increasing attention in software engineering, where testing remains an indispensable reliability mechanism. According to the widely adopted testing pyramid, unit tests constitute the majority of test cases and are often schematic, requiring minimal domain expertise. Automatically generating such tests under the supervision of software engineers can significantly enhance productivity during the development phase of the software lifecycle. This paper investigates the impact of code context and prompting strategies on the quality and adequacy of unit tests generated by various large language models (LLMs) across several families. The results show that including docstrings notably improves code adequacy, while further extending context to the full implementation yields definitely smaller gains. Notably, the chain-of-thought prompting strategy -- applied even to 'reasoning' models -- achieves the best results, with up to 96.3\% branch coverage, a 57\% average mutation score, and near-perfect compilation success rate. Among the evaluated models, M5 (Gemini 2.5 Pro) demonstrated superior performance in both mutation score and branch coverage being still in top in terms of compilation success rate. All the code and resulting test suites are publicly available at https://github.com/peetery/LLM-analysis.
Learning to Generate Unit Tests for Automated Debugging
Unit tests (UTs) play an instrumental role in assessing code correctness as well as providing feedback to a large language model (LLM) as it iteratively debugs faulty code, motivating automated test generation. However, we uncover a trade-off between generating unit test inputs that reveal errors when given a faulty code and correctly predicting the unit test output without access to the gold solution. To address this trade-off, we propose UTGen, which teaches LLMs to generate unit test inputs that reveal errors along with their correct expected outputs based on task descriptions and candidate code. We integrate UTGen into UTDebug, a robust debugging pipeline that uses generated tests to help LLMs debug effectively. Since model-generated tests can provide noisy signals (e.g., from incorrectly predicted outputs), UTDebug (i) scales UTGen via test-time compute to improve UT output prediction, and (ii) validates and back-tracks edits based on multiple generated UTs to avoid overfitting. We show that UTGen outperforms UT generation baselines by 7.59% based on a metric measuring the presence of both error-revealing UT inputs and correct UT outputs. When used with UTDebug, we find that feedback from UTGen's unit tests improves pass@1 accuracy of Qwen-2.5 7B on HumanEvalFix and our own harder debugging split of MBPP+ by over 3% and 12.35% (respectively) over other LLM-based UT generation baselines.
ConDefects: A New Dataset to Address the Data Leakage Concern for LLM-based Fault Localization and Program Repair
With the growing interest on Large Language Models (LLMs) for fault localization and program repair, ensuring the integrity and generalizability of the LLM-based methods becomes paramount. The code in existing widely-adopted benchmarks for these tasks was written before the the bloom of LLMs and may be included in the training data of existing popular LLMs, thereby suffering from the threat of data leakage, leading to misleadingly optimistic performance metrics. To address this issue, we introduce "ConDefects", a novel dataset of real faults meticulously curated to eliminate such overlap. ConDefects contains 1,254 Java faulty programs and 1,625 Python faulty programs. All these programs are sourced from the online competition platform AtCoder and were produced between October 2021 and September 2023. We pair each fault with fault locations and the corresponding repaired code versions, making it tailored for in fault localization and program repair related research. We also provide interfaces for selecting subsets based on different time windows and coding task difficulties. While inspired by LLM-based tasks, ConDefects can be adopted for benchmarking ALL types of fault localization and program repair methods. The dataset is publicly available, and a demo video can be found at https://www.youtube.com/watch?v=22j15Hj5ONk.
SuperCoder2.0: Technical Report on Exploring the feasibility of LLMs as Autonomous Programmer
We present SuperCoder2.0, an advanced autonomous system designed to enhance software development through artificial intelligence. The system combines an AI-native development approach with intelligent agents to enable fully autonomous coding. Key focus areas include a retry mechanism with error output traceback, comprehensive code rewriting and replacement using Abstract Syntax Tree (ast) parsing to minimize linting issues, code embedding technique for retrieval-augmented generation, and a focus on localizing methods for problem-solving rather than identifying specific line numbers. The methodology employs a three-step hierarchical search space reduction approach for code base navigation and bug localization:utilizing Retrieval Augmented Generation (RAG) and a Repository File Level Map to identify candidate files, (2) narrowing down to the most relevant files using a File Level Schematic Map, and (3) extracting 'relevant locations' within these files. Code editing is performed through a two-part module comprising CodeGeneration and CodeEditing, which generates multiple solutions at different temperature values and replaces entire methods or classes to maintain code integrity. A feedback loop executes repository-level test cases to validate and refine solutions. Experiments conducted on the SWE-bench Lite dataset demonstrate SuperCoder2.0's effectiveness, achieving correct file localization in 84.33% of cases within the top 5 candidates and successfully resolving 34% of test instances. This performance places SuperCoder2.0 fourth globally on the SWE-bench leaderboard. The system's ability to handle diverse repositories and problem types highlights its potential as a versatile tool for autonomous software development. Future work will focus on refining the code editing process and exploring advanced embedding models for improved natural language to code mapping.
Towards Foundational AI Models for Additive Manufacturing: Language Models for G-Code Debugging, Manipulation, and Comprehension
3D printing or additive manufacturing is a revolutionary technology that enables the creation of physical objects from digital models. However, the quality and accuracy of 3D printing depend on the correctness and efficiency of the G-code, a low-level numerical control programming language that instructs 3D printers how to move and extrude material. Debugging G-code is a challenging task that requires a syntactic and semantic understanding of the G-code format and the geometry of the part to be printed. In this paper, we present the first extensive evaluation of six state-of-the-art foundational large language models (LLMs) for comprehending and debugging G-code files for 3D printing. We design effective prompts to enable pre-trained LLMs to understand and manipulate G-code and test their performance on various aspects of G-code debugging and manipulation, including detection and correction of common errors and the ability to perform geometric transformations. We analyze their strengths and weaknesses for understanding complete G-code files. We also discuss the implications and limitations of using LLMs for G-code comprehension.
False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.
Test-Driven Development for Code Generation
Recent Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements. This increasingly automated process mirrors traditional human-led software development, where code is often written in response to a requirement. Historically, Test-Driven Development (TDD) has proven its merit, requiring developers to write tests before the functional code, ensuring alignment with the initial problem statements. Applying TDD principles to LLM-based code generation offers one distinct benefit: it enables developers to verify the correctness of generated code against predefined tests. This paper investigates if and how TDD can be incorporated into AI-assisted code-generation processes. We experimentally evaluate our hypothesis that providing LLMs like GPT-4 and Llama 3 with tests in addition to the problem statements enhances code generation outcomes. We experimented with established function-level code generation benchmarks such as MBPP and HumanEval. Our results consistently demonstrate that including test cases leads to higher success in solving programming challenges. We assert that TDD is a promising paradigm for helping ensure that the code generated by LLMs effectively captures the requirements.
TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models
Software testing is a crucial phase in the software life cycle, helping identify potential risks and reduce maintenance costs. With the advancement of Large Language Models (LLMs), researchers have proposed an increasing number of LLM-based software testing techniques, particularly in the area of test case generation. Despite the growing interest, limited efforts have been made to thoroughly evaluate the actual capabilities of LLMs in this task. In this paper, we introduce TestBench, a benchmark for class-level LLM-based test case generation. We construct a dataset of 108 Java programs from 9 real-world, large-scale projects on GitHub, each representing a different thematic domain. We then design three distinct types of prompts based on context descriptions, including self-contained context, full context, and simple context. Besides, we propose a fine-grained evaluation framework that considers five aspects of test cases: syntactic correctness, compilation correctness, test correctness, code coverage rate, and defect detection rate. Furthermore, we propose a heuristic algorithm to repair erroneous test cases generated by LLMs. We evaluate CodeLlama-13b, GPT-3.5, and GPT-4 on the TestBench, and our experimental results indicate that larger models demonstrate a greater ability to effectively utilize contextual information, thus generating higher-quality test cases. Smaller models may struggle with the noise introduced by the extensive information contained within the full context. However, when using the simplified version, namely the simple context, which is derived from the full context via abstract syntax tree analysis, the performance of these models improves significantly. Our analysis highlights the current progress and pinpoints future directions to further enhance the effectiveness of models by handling contextual information for test case generation.
Vision-driven Automated Mobile GUI Testing via Multimodal Large Language Model
With the advancement of software rendering techniques, GUI pages in mobile apps now encompass a wealth of visual information, where the visual semantics of each page contribute to the overall app logic, presenting new challenges to software testing. Despite the progress in automated Graphical User Interface (GUI) testing, the absence of testing oracles has constrained its efficacy to identify only crash bugs with evident abnormal signals. Nonetheless, there are still a considerable number of non-crash bugs, ranging from unexpected behaviors to misalignments, often evading detection by existing techniques. While these bugs can exhibit visual cues that serve as potential testing oracles, they often entail a sequence of screenshots, and detecting them necessitates an understanding of the operational logic among GUI page transitions, which is challenging traditional techniques. Considering the remarkable performance of Multimodal Large Language Models (MLLM) in visual and language understanding, this paper proposes a vision-driven automated GUI testing approach VisionDroid to detect non-crash functional bugs with MLLM. It begins by extracting GUI text information and aligning it with screenshots to form a vision prompt, enabling MLLM to understand GUI context. The function-aware explorer then employs MLLM for deeper and function-oriented GUI page exploration, while the logic-aware bug detector segments the entire exploration history into logically cohesive parts and prompts the MLLM for bug detection. We evaluate VisionDroid on three datasets and compare it with 10 baselines, demonstrating its excellent performance. The ablation study further proves the contribution of each module. Moreover, VisionDroid identifies 29 new bugs on Google Play, of which 19 have been confirmed and fixed.
Methods2Test: A dataset of focal methods mapped to test cases
Unit testing is an essential part of the software development process, which helps to identify issues with source code in early stages of development and prevent regressions. Machine learning has emerged as viable approach to help software developers generate automated unit tests. However, generating reliable unit test cases that are semantically correct and capable of catching software bugs or unintended behavior via machine learning requires large, metadata-rich, datasets. In this paper we present Methods2Test: A dataset of focal methods mapped to test cases: a large, supervised dataset of test cases mapped to corresponding methods under test (i.e., focal methods). This dataset contains 780,944 pairs of JUnit tests and focal methods, extracted from a total of 91,385 Java open source projects hosted on GitHub with licenses permitting re-distribution. The main challenge behind the creation of the Methods2Test was to establish a reliable mapping between a test case and the relevant focal method. To this aim, we designed a set of heuristics, based on developers' best practices in software testing, which identify the likely focal method for a given test case. To facilitate further analysis, we store a rich set of metadata for each method-test pair in JSON-formatted files. Additionally, we extract textual corpus from the dataset at different context levels, which we provide both in raw and tokenized forms, in order to enable researchers to train and evaluate machine learning models for Automated Test Generation. Methods2Test is publicly available at: https://github.com/microsoft/methods2test
Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute
Recent advancements in software engineering agents have demonstrated promising capabilities in automating program improvements. However, their reliance on closed-source or resource-intensive models introduces significant deployment challenges in private environments, prompting a critical question: How can personally deployable open-source LLMs achieve comparable code reasoning performance? To this end, we propose a unified Test-Time Compute scaling framework that leverages increased inference-time computation instead of larger models. Our framework incorporates two complementary strategies: internal TTC and external TTC. Internally, we introduce a development-contextualized trajectory synthesis method leveraging real-world software repositories to bootstrap multi-stage reasoning processes, such as fault localization and patch generation. We further enhance trajectory quality through rejection sampling, rigorously evaluating trajectories along accuracy and complexity. Externally, we propose a novel development-process-based search strategy guided by reward models and execution verification. This approach enables targeted computational allocation at critical development decision points, overcoming limitations of existing "end-point only" verification methods. Evaluations on SWE-bench Verified demonstrate our 32B model achieves a 46\% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1. Additionally, we provide the empirical validation of the test-time scaling phenomenon within SWE agents, revealing that models dynamically allocate more tokens to increasingly challenging problems, effectively enhancing reasoning capabilities. We publicly release all training data, models, and code to facilitate future research. https://github.com/yingweima2022/SWE-Reasoner
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
Understanding Flaky Tests: The Developer's Perspective
Flaky tests are software tests that exhibit a seemingly random outcome (pass or fail) when run against the same, identical code. Previous work has examined fixes to flaky tests and has proposed automated solutions to locate as well as fix flaky tests--we complement it by examining the perceptions of software developers about the nature, relevance, and challenges of this phenomenon. We asked 21 professional developers to classify 200 flaky tests they previously fixed, in terms of the nature of the flakiness, the origin of the flakiness, and the fixing effort. We complement this analysis with information about the fixing strategy. Subsequently, we conducted an online survey with 121 developers with a median industrial programming experience of five years. Our research shows that: The flakiness is due to several different causes, four of which have never been reported before, despite being the most costly to fix; flakiness is perceived as significant by the vast majority of developers, regardless of their team's size and project's domain, and it can have effects on resource allocation, scheduling, and the perceived reliability of the test suite; and the challenges developers report to face regard mostly the reproduction of the flaky behavior and the identification of the cause for the flakiness. Data and materials [https://doi.org/10.5281/zenodo.3265785].
PERC: Plan-As-Query Example Retrieval for Underrepresented Code Generation
Code generation with large language models has shown significant promise, especially when employing retrieval-augmented generation (RAG) with few-shot examples. However, selecting effective examples that enhance generation quality remains a challenging task, particularly when the target programming language (PL) is underrepresented. In this study, we present two key findings: (1) retrieving examples whose presented algorithmic plans can be referenced for generating the desired behavior significantly improves generation accuracy, and (2) converting code into pseudocode effectively captures such algorithmic plans, enhancing retrieval quality even when the source and the target PLs are different. Based on these findings, we propose Plan-as-query Example Retrieval for few-shot prompting in Code generation (PERC), a novel framework that utilizes algorithmic plans to identify and retrieve effective examples. We validate the effectiveness of PERC through extensive experiments on the CodeContests, HumanEval and MultiPL-E benchmarks: PERC consistently outperforms the state-of-the-art RAG methods in code generation, both when the source and target programming languages match or differ, highlighting its adaptability and robustness in diverse coding environments.
What Did I Do Wrong? Quantifying LLMs' Sensitivity and Consistency to Prompt Engineering
Large Language Models (LLMs) changed the way we design and interact with software systems. Their ability to process and extract information from text has drastically improved productivity in a number of routine tasks. Developers that want to include these models in their software stack, however, face a dreadful challenge: debugging LLMs' inconsistent behavior across minor variations of the prompt. We therefore introduce two metrics for classification tasks, namely sensitivity and consistency, which are complementary to task performance. First, sensitivity measures changes of predictions across rephrasings of the prompt, and does not require access to ground truth labels. Instead, consistency measures how predictions vary across rephrasings for elements of the same class. We perform an empirical comparison of these metrics on text classification tasks, using them as guideline for understanding failure modes of the LLM. Our hope is that sensitivity and consistency will be helpful to guide prompt engineering and obtain LLMs that balance robustness with performance.
The Hitchhiker's Guide to Program Analysis, Part II: Deep Thoughts by LLMs
Static analysis is a cornerstone for software vulnerability detection, yet it often struggles with the classic precision-scalability trade-off. In practice, such tools often produce high false positive rates, particularly in large codebases like the Linux kernel. This imprecision can arise from simplified vulnerability modeling and over-approximation of path and data constraints. While large language models (LLMs) show promise in code understanding, their naive application to program analysis yields unreliable results due to inherent reasoning limitations. We introduce BugLens, a post-refinement framework that significantly improves static analysis precision. BugLens guides an LLM to follow traditional analysis steps by assessing buggy code patterns for security impact and validating the constraints associated with static warnings. Evaluated on real-world Linux kernel bugs, BugLens raises precision from 0.10 (raw) and 0.50 (semi-automated refinement) to 0.72, substantially reducing false positives and revealing four previously unreported vulnerabilities. Our results suggest that a structured LLM-based workflow can meaningfully enhance the effectiveness of static analysis tools.
Design choices made by LLM-based test generators prevent them from finding bugs
There is an increasing amount of research and commercial tools for automated test case generation using Large Language Models (LLMs). This paper critically examines whether recent LLM-based test generation tools, such as Codium CoverAgent and CoverUp, can effectively find bugs or unintentionally validate faulty code. Considering bugs are only exposed by failing test cases, we explore the question: can these tools truly achieve the intended objectives of software testing when their test oracles are designed to pass? Using real human-written buggy code as input, we evaluate these tools, showing how LLM-generated tests can fail to detect bugs and, more alarmingly, how their design can worsen the situation by validating bugs in the generated test suite and rejecting bug-revealing tests. These findings raise important questions about the validity of the design behind LLM-based test generation tools and their impact on software quality and test suite reliability.
Impact of Code Language Models on Automated Program Repair
Automated program repair (APR) aims to help developers improve software reliability by generating patches for buggy programs. Although many code language models (CLM) are developed and effective in many software tasks such as code completion, there has been little comprehensive, in-depth work to evaluate CLMs' fixing capabilities and to fine-tune CLMs for the APR task. Firstly, this work is the first to evaluate ten CLMs on four APR benchmarks, which shows that surprisingly, the best CLM, as is, fixes 72% more bugs than the state-of-the-art deep-learning (DL)-based APR techniques. Secondly, one of the four APR benchmarks was created by us in this paper to avoid data leaking for a fair evaluation. Thirdly, it is the first work to fine-tune CLMs with APR training data, which shows that fine-tuning brings 31%-1,267% improvement to CLMs and enables them to fix 46%-164% more bugs than existing DL-based APR techniques. Fourthly, this work studies the impact of buggy lines, showing that CLMs, as is, cannot make good use of the buggy lines to fix bugs, yet fine-tuned CLMs could potentially over-rely on buggy lines. Lastly, this work analyzes the size, time, and memory efficiency of different CLMs. This work shows promising directions for the APR domain, such as fine-tuning CLMs with APR-specific designs, and also raises awareness of fair and comprehensive evaluations of CLMs and calls for more transparent reporting of open-source repositories used in the pre-training data to address the data leaking problem.
AutoCodeRover: Autonomous Program Improvement
Researchers have made significant progress in automating the software development process in the past decades. Recent progress in Large Language Models (LLMs) has significantly impacted the development process, where developers can use LLM-based programming assistants to achieve automated coding. Nevertheless, software engineering involves the process of program improvement apart from coding, specifically to enable software maintenance (e.g. bug fixing) and software evolution (e.g. feature additions). In this paper, we propose an automated approach for solving GitHub issues to autonomously achieve program improvement. In our approach called AutoCodeRover, LLMs are combined with sophisticated code search capabilities, ultimately leading to a program modification or patch. In contrast to recent LLM agent approaches from AI researchers and practitioners, our outlook is more software engineering oriented. We work on a program representation (abstract syntax tree) as opposed to viewing a software project as a mere collection of files. Our code search exploits the program structure in the form of classes/methods to enhance LLM's understanding of the issue's root cause, and effectively retrieve a context via iterative search. The use of spectrum-based fault localization using tests, further sharpens the context, as long as a test-suite is available. Experiments on SWE-bench-lite (300 real-life GitHub issues) show increased efficacy in solving GitHub issues (19% on SWE-bench-lite), which is higher than the efficacy of the recently reported SWE-agent. In addition, AutoCodeRover achieved this efficacy with significantly lower cost (on average, $0.43 USD), compared to other baselines. We posit that our workflow enables autonomous software engineering, where, in future, auto-generated code from LLMs can be autonomously improved.
Flexible Non-intrusive Dynamic Instrumentation for WebAssembly
A key strength of managed runtimes over hardware is the ability to gain detailed insight into the dynamic execution of programs with instrumentation. Analyses such as code coverage, execution frequency, tracing, and debugging, are all made easier in a virtual setting. As a portable, low-level bytecode, WebAssembly offers inexpensive in-process sandboxing with high performance. Yet to date, Wasm engines have not offered much insight into executing programs, supporting at best bytecode-level stepping and basic source maps, but no instrumentation capabilities. In this paper, we show the first non-intrusive dynamic instrumentation system for WebAssembly in the open-source Wizard Research Engine. Our innovative design offers a flexible, complete hierarchy of instrumentation primitives that support building high-level, complex analyses in terms of low-level, programmable probes. In contrast to emulation or machine code instrumentation, injecting probes at the bytecode level increases expressiveness and vastly simplifies the implementation by reusing the engine's JIT compiler, interpreter, and deoptimization mechanism rather than building new ones. Wizard supports both dynamic instrumentation insertion and removal while providing consistency guarantees, which is key to composing multiple analyses without interference. We detail a fully-featured implementation in a high-performance multi-tier Wasm engine, show novel optimizations specifically designed to minimize instrumentation overhead, and evaluate performance characteristics under load from various analyses. This design is well-suited for production engine adoption as probes can be implemented to have no impact on production performance when not in use.
Self-Supervised Bug Detection and Repair
Machine learning-based program analyses have recently shown the promise of integrating formal and probabilistic reasoning towards aiding software development. However, in the absence of large annotated corpora, training these analyses is challenging. Towards addressing this, we present BugLab, an approach for self-supervised learning of bug detection and repair. BugLab co-trains two models: (1) a detector model that learns to detect and repair bugs in code, (2) a selector model that learns to create buggy code for the detector to use as training data. A Python implementation of BugLab improves by up to 30% upon baseline methods on a test dataset of 2374 real-life bugs and finds 19 previously unknown bugs in open-source software.
ReF Decompile: Relabeling and Function Call Enhanced Decompile
The goal of decompilation is to convert compiled low-level code (e.g., assembly code) back into high-level programming languages, enabling analysis in scenarios where source code is unavailable. This task supports various reverse engineering applications, such as vulnerability identification, malware analysis, and legacy software migration. The end-to-end decompile method based on large langauge models (LLMs) reduces reliance on additional tools and minimizes manual intervention due to its inherent properties. However, previous end-to-end methods often lose critical information necessary for reconstructing control flow structures and variables when processing binary files, making it challenging to accurately recover the program's logic. To address these issues, we propose the ReF Decompile method, which incorporates the following innovations: (1) The Relabelling strategy replaces jump target addresses with labels, preserving control flow clarity. (2) The Function Call strategy infers variable types and retrieves missing variable information from binary files. Experimental results on the Humaneval-Decompile Benchmark demonstrate that ReF Decompile surpasses comparable baselines and achieves state-of-the-art (SOTA) performance of 61.43%.
Are "Solved Issues" in SWE-bench Really Solved Correctly? An Empirical Study
Automated issue solving aims to resolve real-world issues in software repositories. The most popular benchmarks for automated issue solving are SWE-bench and its human-filtered subset SWE-bench Verified. These benchmarks leverage testing to validate generated patches. However, because testing is rarely exhaustive, a patch may pass the tests but nevertheless fail to match the developers' expectations. Unfortunately, it is currently unclear to what extent evaluations performed with SWE-bench suffer from such plausible but incorrect patches. This paper presents an in-depth empirical study of the correctness of plausible patches generated by three state-of-the-art issue-solving tools evaluated on SWE-bench Verified. We extensively test and inspect generated patches, and compare them against human-written ground truth patches. The core of our methodology is a novel technique PatchDiff for differential patch testing, which automatically exposes behavioral discrepancies between two patches. Our findings reveal critical weaknesses in SWE-bench's patch validation mechanism, which causes 7.8% of all patches to count as correct while failing the developer-written test suite. Moreover, our novel automated technique reveals that even more (29.6%) plausible patches induce different behavior than the ground truth patches. These behavioral differences are often due to similar, but divergent implementations (46.8%) and due to generated patches that adapt more behavior than the ground truth patches (27.3%). Our manual inspection shows that 28.6% of behaviorally divergent patches are certainly incorrect. Combined, the different weaknesses lead to an inflation of reported resolution rates by 6.2 absolute percent points. Our findings are a call to arms for more robust and reliable evaluation of issue-solving tools. We envision our automated differential patch testing technique to be useful for this purpose.
T5APR: Empowering Automated Program Repair across Languages through Checkpoint Ensemble
Automated program repair (APR) using deep learning techniques has become an important area of research in recent years, aiming to automatically generate bug-fixing patches that can improve software reliability and maintainability. However, most existing methods either target a single language or require high computational resources to train multilingual models. In this paper, we propose T5APR, a novel neural program repair approach that provides a unified solution for bug fixing across multiple programming languages. T5APR leverages CodeT5, a powerful pre-trained text-to-text transformer model, and adopts a checkpoint ensemble strategy to improve patch recommendation. We conduct comprehensive evaluations on six well-known benchmarks in four programming languages (Java, Python, C, JavaScript), demonstrating T5APR's competitiveness against state-of-the-art techniques. T5APR correctly fixes 1,985 bugs, including 1,442 bugs that none of the compared techniques has fixed. We further support the effectiveness of our approach by conducting detailed analyses, such as comparing the correct patch ranking among different techniques. The findings of this study demonstrate the potential of T5APR for use in real-world applications and highlight the importance of multilingual approaches in the field of APR.
Natural Language-Guided Programming
In today's software world with its cornucopia of reusable software libraries, when a programmer is faced with a programming task that they suspect can be completed through the use of a library, they often look for code examples using a search engine and then manually adapt found examples to their specific context of use. We put forward a vision based on a new breed of developer tools that have the potential to largely automate this process. The key idea is to adapt code autocompletion tools such that they take into account not only the developer's already-written code but also the intent of the task the developer is trying to achieve next, formulated in plain natural language. We call this practice of enriching the code with natural language intent to facilitate its completion natural language-guided programming. To show that this idea is feasible we design, implement and benchmark a tool that solves this problem in the context of a specific domain (data science) and a specific programming language (Python). Central to the tool is the use of language models trained on a large corpus of documented code. Our initial experiments confirm the feasibility of the idea but also make it clear that we have only scratched the surface of what may become possible in the future. We end the paper with a comprehensive research agenda to stimulate additional research in the budding area of natural language-guided programming.
Substance Beats Style: Why Beginning Students Fail to Code with LLMs
Although LLMs are increasing the productivity of professional programmers, existing work shows that beginners struggle to prompt LLMs to solve text-to-code tasks. Why is this the case? This paper explores two competing hypotheses about the cause of student-LLM miscommunication: (1) students simply lack the technical vocabulary needed to write good prompts, and (2) students do not understand the extent of information that LLMs need to solve code generation tasks. We study (1) with a causal intervention experiment on technical vocabulary and (2) by analyzing graphs that abstract how students edit prompts and the different failures that they encounter. We find that substance beats style: a poor grasp of technical vocabulary is merely correlated with prompt failure; that the information content of prompts predicts success; that students get stuck making trivial edits; and more. Our findings have implications for the use of LLMs in programming education, and for efforts to make computing more accessible with LLMs.
Did We Miss Something Important? Studying and Exploring Variable-Aware Log Abstraction
Due to the sheer size of software logs, developers rely on automated techniques for log analysis. One of the first and most important steps of automated log analysis is log abstraction, which parses the raw logs into a structured format. Prior log abstraction techniques aim to identify and abstract all the dynamic variables in logs and output a static log template for automated log analysis. However, these abstracted dynamic variables may also contain important information that is useful to different tasks in log analysis. In this paper, we investigate the characteristics of dynamic variables and their importance in practice, and explore the potential of a variable-aware log abstraction technique. Through manual investigations and surveys with practitioners, we find that different categories of dynamic variables record various information that can be important depending on the given tasks, the distinction of dynamic variables in log abstraction can further assist in log analysis. We then propose a deep learning based log abstraction approach, named VALB, which can identify different categories of dynamic variables and preserve the value of specified categories of dynamic variables along with the log templates (i.e., variable-aware log abstraction). Through the evaluation on a widely used log abstraction benchmark, we find that VALB outperforms other state-of-the-art log abstraction techniques on general log abstraction (i.e., when abstracting all the dynamic variables) and also achieves a high variable-aware log abstraction accuracy that further identifies the category of the dynamic variables. Our study highlights the potential of leveraging the important information recorded in the dynamic variables to further improve the process of log analysis.
Rethinking the Influence of Source Code on Test Case Generation
Large language models (LLMs) have been widely applied to assist test generation with the source code under test provided as the context. This paper aims to answer the question: If the source code under test is incorrect, will LLMs be misguided when generating tests? The effectiveness of test cases is measured by their accuracy, coverage, and bug detection effectiveness. Our evaluation results with five open- and six closed-source LLMs on four datasets demonstrate that incorrect code can significantly mislead LLMs in generating correct, high-coverage, and bug-revealing tests. For instance, in the HumanEval dataset, LLMs achieve 80.45% test accuracy when provided with task descriptions and correct code, but only 57.12% when given task descriptions and incorrect code. For the APPS dataset, prompts with correct code yield tests that detect 39.85% of the bugs, while prompts with incorrect code detect only 19.61%. These findings have important implications for the deployment of LLM-based testing: using it on mature code may help protect against future regression, but on early-stage immature code, it may simply bake in errors. Our findings also underscore the need for further research to improve LLMs resilience against incorrect code in generating reliable and bug-revealing tests.
Lost in Translation: A Study of Bugs Introduced by Large Language Models while Translating Code
Code translation aims to convert source code from one programming language (PL) to another. Given the promising abilities of large language models (LLMs) in code synthesis, researchers are exploring their potential to automate code translation. The prerequisite for advancing the state of LLM-based code translation is to understand their promises and limitations over existing techniques. To that end, we present a large-scale empirical study to investigate the ability of general LLMs and code LLMs for code translation across pairs of different languages, including C, C++, Go, Java, and Python. Our study, which involves the translation of 1,700 code samples from three benchmarks and two real-world projects, reveals that LLMs are yet to be reliably used to automate code translation -- with correct translations ranging from 2.1% to 47.3% for the studied LLMs. Further manual investigation of unsuccessful translations identifies 15 categories of translation bugs. We also compare LLM-based code translation with traditional non-LLM-based approaches. Our analysis shows that these two classes of techniques have their own strengths and weaknesses. Finally, insights from our study suggest that providing more context to LLMs during translation can help them produce better results. To that end, we propose a prompt-crafting approach based on the symptoms of erroneous translations; this improves the performance of LLM-based code translation by 5.5% on average. Our study is the first of its kind, in terms of scale and breadth, that provides insights into the current limitations of LLMs in code translation and opportunities for improving them. Our dataset -- consisting of 1,700 code samples in five PLs with 10K+ tests, 43K+ translated code, 1,725 manually labeled bugs, and 1,365 bug-fix pairs -- can help drive research in this area.
Guiding Language Models of Code with Global Context using Monitors
Language models of code (LMs) work well when the surrounding code in the vicinity of generation provides sufficient context. This is not true when it becomes necessary to use types or functionality defined in another module or library, especially those not seen during training. LMs suffer from limited awareness of such global context and end up hallucinating, e.g., using types defined in other files incorrectly. Recent work tries to overcome this issue by retrieving global information to augment the local context. However, this bloats the prompt or requires architecture modifications and additional training. Integrated development environments (IDEs) assist developers by bringing the global context at their fingertips using static analysis. We extend this assistance, enjoyed by developers, to the LMs. We propose a notion of monitors that use static analysis in the background to guide the decoding. Unlike a priori retrieval, static analysis is invoked iteratively during the entire decoding process, providing the most relevant suggestions on demand. We demonstrate the usefulness of our proposal by monitoring for type-consistent use of identifiers whenever an LM generates code for object dereference. To evaluate our approach, we curate PragmaticCode, a dataset of open-source projects with their development environments. On models of varying parameter scale, we show that monitor-guided decoding consistently improves the ability of an LM to not only generate identifiers that match the ground truth but also improves compilation rates and agreement with ground truth. We find that LMs with fewer parameters, when guided with our monitor, can outperform larger LMs. With monitor-guided decoding, SantaCoder-1.1B achieves better compilation rate and next-identifier match than the much larger text-davinci-003 model. The datasets and code will be released at https://aka.ms/monitors4codegen .
A Critical Review of Large Language Model on Software Engineering: An Example from ChatGPT and Automated Program Repair
Large Language Models (LLMs) have been gaining increasing attention and demonstrated promising performance across a variety of Software Engineering (SE) tasks, such as Automated Program Repair (APR), code summarization, and code completion. For example, ChatGPT, the latest black-box LLM, has been investigated by numerous recent research studies and has shown impressive performance in various tasks. However, there exists a potential risk of data leakage since these LLMs are usually close-sourced with unknown specific training details, e.g., pre-training datasets. In this paper, we seek to review the bug-fixing capabilities of ChatGPT on a clean APR benchmark with different research objectives. We first introduce {\benchmark}, a new benchmark with buggy and the corresponding fixed programs from competitive programming problems starting from 2023, after the training cutoff point of ChatGPT. The results on {\benchmark} show that ChatGPT is able to fix 109 out of 151 buggy programs using the basic prompt within 35 independent rounds, outperforming state-of-the-art LLMs CodeT5 and PLBART by 27.5\% and 62.4\% prediction accuracy. We also investigate the impact of three types of prompts, i.e., problem description, error feedback, and bug localization, leading to additional 34 fixed bugs. Besides, we provide additional discussion from the interactive nature of ChatGPT to illustrate the capacity of a dialog-based repair workflow with 9 additional fixed bugs. Inspired by the findings, we further pinpoint various challenges and opportunities for advanced SE study equipped with such LLMs (e.g.,~ChatGPT) in the near future. More importantly, our work calls for more research on the reevaluation of the achievements obtained by existing black-box LLMs across various SE tasks, not limited to ChatGPT on APR.
LLM4SecHW: Leveraging Domain Specific Large Language Model for Hardware Debugging
This paper presents LLM4SecHW, a novel framework for hardware debugging that leverages domain specific Large Language Model (LLM). Despite the success of LLMs in automating various software development tasks, their application in the hardware security domain has been limited due to the constraints of commercial LLMs and the scarcity of domain specific data. To address these challenges, we propose a unique approach to compile a dataset of open source hardware design defects and their remediation steps, utilizing version control data. This dataset provides a substantial foundation for training machine learning models for hardware. LLM4SecHW employs fine tuning of medium sized LLMs based on this dataset, enabling the identification and rectification of bugs in hardware designs. This pioneering approach offers a reference workflow for the application of fine tuning domain specific LLMs in other research areas. We evaluate the performance of our proposed system on various open source hardware designs, demonstrating its efficacy in accurately identifying and correcting defects. Our work brings a new perspective on automating the quality control process in hardware design.
Is this bug severe? A text-cum-graph based model for bug severity prediction
Repositories of large software systems have become commonplace. This massive expansion has resulted in the emergence of various problems in these software platforms including identification of (i) bug-prone packages, (ii) critical bugs, and (iii) severity of bugs. One of the important goals would be to mine these bugs and recommend them to the developers to resolve them. The first step to this is that one has to accurately detect the extent of severity of the bugs. In this paper, we take up this task of predicting the severity of bugs in the near future. Contextualized neural models built on the text description of a bug and the user comments about the bug help to achieve reasonably good performance. Further information on how the bugs are related to each other in terms of the ways they affect packages can be summarised in the form of a graph and used along with the text to get additional benefits.
Demystifying GPT Self-Repair for Code Generation
Large Language Models (LLMs) have shown remarkable aptitude in code generation but still struggle on challenging programming tasks. Self-repair -- in which the model debugs and fixes mistakes in its own code -- has recently become a popular way to boost performance in these settings. However, only very limited studies on how and when self-repair works effectively exist in the literature, and one might wonder to what extent a model is really capable of providing accurate feedback on why the code is wrong when that code was generated by the same model. In this paper, we analyze GPT-3.5 and GPT-4's ability to perform self-repair on APPS, a challenging dataset consisting of diverse coding challenges. To do so, we first establish a new evaluation strategy dubbed pass@t that measures the pass rate of the tasks against the total number of tokens sampled from the model, enabling a fair comparison to purely sampling-based approaches. With this evaluation strategy, we find that the effectiveness of self-repair is only seen in GPT-4. We also observe that self-repair is bottlenecked by the feedback stage; using GPT-4 to give feedback on the programs generated by GPT-3.5 and using expert human programmers to give feedback on the programs generated by GPT-4, we unlock significant performance gains.
LocAgent: Graph-Guided LLM Agents for Code Localization
Code localization--identifying precisely where in a codebase changes need to be made--is a fundamental yet challenging task in software maintenance. Existing approaches struggle to efficiently navigate complex codebases when identifying relevant code sections. The challenge lies in bridging natural language problem descriptions with the appropriate code elements, often requiring reasoning across hierarchical structures and multiple dependencies. We introduce LocAgent, a framework that addresses code localization through graph-based representation. By parsing codebases into directed heterogeneous graphs, LocAgent creates a lightweight representation that captures code structures (files, classes, functions) and their dependencies (imports, invocations, inheritance), enabling LLM agents to effectively search and locate relevant entities through powerful multi-hop reasoning. Experimental results on real-world benchmarks demonstrate that our approach significantly enhances accuracy in code localization. Notably, our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost (approximately 86% reduction), reaching up to 92.7% accuracy on file-level localization while improving downstream GitHub issue resolution success rates by 12% for multiple attempts (Pass@10). Our code is available at https://github.com/gersteinlab/LocAgent.
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
PyResBugs: A Dataset of Residual Python Bugs for Natural Language-Driven Fault Injection
This paper presents PyResBugs, a curated dataset of residual bugs, i.e., defects that persist undetected during traditional testing but later surface in production, collected from major Python frameworks. Each bug in the dataset is paired with its corresponding fault-free (fixed) version and annotated with multi-level natural language (NL) descriptions. These NL descriptions enable natural language-driven fault injection, offering a novel approach to simulating real-world faults in software systems. By bridging the gap between software fault injection techniques and real-world representativeness, PyResBugs provides researchers with a high-quality resource for advancing AI-driven automated testing in Python systems.
Method-Level Bug Severity Prediction using Source Code Metrics and LLMs
In the past couple of decades, significant research efforts are devoted to the prediction of software bugs. However, most existing work in this domain treats all bugs the same, which is not the case in practice. It is important for a defect prediction method to estimate the severity of the identified bugs so that the higher-severity ones get immediate attention. In this study, we investigate source code metrics, source code representation using large language models (LLMs), and their combination in predicting bug severity labels of two prominent datasets. We leverage several source metrics at method-level granularity to train eight different machine-learning models. Our results suggest that Decision Tree and Random Forest models outperform other models regarding our several evaluation metrics. We then use the pre-trained CodeBERT LLM to study the source code representations' effectiveness in predicting bug severity. CodeBERT finetuning improves the bug severity prediction results significantly in the range of 29%-140% for several evaluation metrics, compared to the best classic prediction model on source code metric. Finally, we integrate source code metrics into CodeBERT as an additional input, using our two proposed architectures, which both enhance the CodeBERT model effectiveness.
GAMMA: Revisiting Template-based Automated Program Repair via Mask Prediction
Automated program repair (APR) aims to fix software bugs without human intervention and template-based APR has been widely investigated with promising results. However, it is challenging for template-based APR to select the appropriate donor code, which is an important repair ingredient for generating candidate patches. Inappropriate donor code may cause plausible but incorrect patch generation even with correct fix patterns, limiting the repair performance. In this paper, we aim to revisit template-based APR, and propose GAMMA, to directly leverage large pre-trained language models for donor code generation. Our main insight is that instead of retrieving donor code in the local buggy file, we can directly predict the correct code tokens based on the context code snippets and repair patterns by a cloze task. Specifically, (1) GAMMA revises a variety of fix templates from state-of-the-art template-based APR techniques (i.e., TBar) and transforms them into mask patterns. (2) GAMMA adopts a pre-trained language model to predict the correct code for masked code as a fill-in-the-blank task. The experimental results demonstrate that GAMMA correctly repairs 82 bugs on Defects4J-v1.2, which achieves 20.59\% (14 bugs) and 26.15\% (17 bugs) improvement over the previous state-of-the-art template-based approach TBar and learning-based one Recoder. Furthermore, GAMMA repairs 45 bugs and 22 bugs from the additional Defects4J-v2.0 and QuixBugs, indicating the generalizability of GAMMA in addressing the dataset overfitting issue. We also prove that adopting other pre-trained language models can provide substantial advancement, e.g., CodeBERT-based and ChatGPT-based GAMMA is able to fix 80 and 67 bugs on Defects4J-v1.2, indicating the scalability of GAMMA. Overall, our study highlights the promising future of adopting pre-trained models to generate correct patches on top of fix patterns.
Conversational Automated Program Repair
Automated Program Repair (APR) can help developers automatically generate patches for bugs. Due to the impressive performance obtained using Large Pre-Trained Language Models (LLMs) on many code related tasks, researchers have started to directly use LLMs for APR. However, prior approaches simply repeatedly sample the LLM given the same constructed input/prompt created from the original buggy code, which not only leads to generating the same incorrect patches repeatedly but also miss the critical information in testcases. To address these limitations, we propose conversational APR, a new paradigm for program repair that alternates between patch generation and validation in a conversational manner. In conversational APR, we iteratively build the input to the model by combining previously generated patches with validation feedback. As such, we leverage the long-term context window of LLMs to not only avoid generating previously incorrect patches but also incorporate validation feedback to help the model understand the semantic meaning of the program under test. We evaluate 10 different LLM including the newly developed ChatGPT model to demonstrate the improvement of conversational APR over the prior LLM for APR approach.
CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification
Software testing is a critical aspect of software development, yet generating test cases remains a routine task for engineers. This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases under specific conditions. Spanning from simple assertion completions to writing test cases that cover specific code blocks across multiple files, these tasks are based on 12 python repositories, analyzing 845 problems with context lengths ranging from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method to construct retrieval contexts using coverage information. While models exhibit comparable performance with short contexts, notable differences emerge with 16k contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage relevant snippets; however, all models score below 35\% on the complex Task III, even with the oracle context provided, underscoring the benchmark's significance and the potential for model improvement. The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
Take a Step Further: Understanding Page Spray in Linux Kernel Exploitation
Recently, a novel method known as Page Spray emerges, focusing on page-level exploitation for kernel vulnerabilities. Despite the advantages it offers in terms of exploitability, stability, and compatibility, comprehensive research on Page Spray remains scarce. Questions regarding its root causes, exploitation model, comparative benefits over other exploitation techniques, and possible mitigation strategies have largely remained unanswered. In this paper, we conduct a systematic investigation into Page Spray, providing an in-depth understanding of this exploitation technique. We introduce a comprehensive exploit model termed the \sys model, elucidating its fundamental principles. Additionally, we conduct a thorough analysis of the root causes underlying Page Spray occurrences within the Linux Kernel. We design an analyzer based on the Page Spray analysis model to identify Page Spray callsites. Subsequently, we evaluate the stability, exploitability, and compatibility of Page Spray through meticulously designed experiments. Finally, we propose mitigation principles for addressing Page Spray and introduce our own lightweight mitigation approach. This research aims to assist security researchers and developers in gaining insights into Page Spray, ultimately enhancing our collective understanding of this emerging exploitation technique and making improvements to the community.
Seeker: Enhancing Exception Handling in Code with LLM-based Multi-Agent Approach
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Types, and Distorted Handling Solutions. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices, providing valuable insights for future improvements in code reliability.
LLPut: Investigating Large Language Models for Bug Report-Based Input Generation
Failure-inducing inputs play a crucial role in diagnosing and analyzing software bugs. Bug reports typically contain these inputs, which developers extract to facilitate debugging. Since bug reports are written in natural language, prior research has leveraged various Natural Language Processing (NLP) techniques for automated input extraction. With the advent of Large Language Models (LLMs), an important research question arises: how effectively can generative LLMs extract failure-inducing inputs from bug reports? In this paper, we propose LLPut, a technique to empirically evaluate the performance of three open-source generative LLMs -- LLaMA, Qwen, and Qwen-Coder -- in extracting relevant inputs from bug reports. We conduct an experimental evaluation on a dataset of 206 bug reports to assess the accuracy and effectiveness of these models. Our findings provide insights into the capabilities and limitations of generative LLMs in automated bug diagnosis.
Seeker: Towards Exception Safety Code Generation with Intermediate Language Agents Framework
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open-source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Block, and Distorted Handling Solution. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi-agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices in real development scenarios, providing valuable insights for future improvements in code reliability.
A Survey of Learning-based Automated Program Repair
Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-source code repositories. Such learning-based techniques usually treat APR as a neural machine translation (NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e., target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance. In this paper, we provide a systematic survey to summarize the current state-of-the-art research in the learning-based APR community. We illustrate the general workflow of learning-based APR techniques and detail the crucial components, including fault localization, patch generation, patch ranking, patch validation, and patch correctness phases. We then discuss the widely-adopted datasets and evaluation metrics and outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques, such as repair domains, industrial deployment, and the open science issue. We highlight several practical guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation and utilizing code features. Overall, our paper can help researchers gain a comprehensive understanding about the achievements of the existing learning-based APR techniques and promote the practical application of these techniques. Our artifacts are publicly available at https://github.com/QuanjunZhang/AwesomeLearningAPR.
How do Observable Users Decompose D3 Code? A Qualitative Study
Many toolkit developers seek to streamline the visualization programming process through structured support such as prescribed templates and example galleries. However, few projects examine how users organize their own visualization programs and how their coding choices may deviate from the intents of toolkit developers, impacting visualization prototyping and design. Further, is it possible to infer users' reasoning indirectly through their code, even when users copy code from other sources? We explore this question through a qualitative analysis of 715 D3 programs on Observable. We identify three levels of program organization based on how users decompose their code into smaller blocks: Program-, Chart-, and Component-Level code decomposition, with a strong preference for Component-Level reasoning. In a series of interviews, we corroborate that these levels reflect how Observable users reason about visualization programs. We compare common user-made components with those theorized in the Grammar of Graphics to assess overlap in user and toolkit developer reasoning. We find that, while the Grammar of Graphics covers basic visualizations well, it falls short in describing complex visualization types, especially those with animation, interaction, and parameterization components. Our findings highlight how user practices differ from formal grammars and reinforce ongoing efforts to rethink visualization toolkit support, including augmenting learning tools and AI assistants to better reflect real-world coding strategies.
On the Adversarial Robustness of Instruction-Tuned Large Language Models for Code
The advent of instruction-tuned Large Language Models designed for coding tasks (Code LLMs) has transformed software engineering practices. However, their robustness against various input challenges remains a critical concern. This study introduces DegradePrompter, a novel method designed to systematically evaluate the robustness of instruction-tuned Code LLMs. We assess the impact of diverse input challenges on the functionality and correctness of generated code using rigorous metrics and established benchmarks. Our comprehensive evaluation includes five state-of-the-art open-source models and three production-grade closed-source models, revealing varying degrees of robustness. Open-source models demonstrate an increased susceptibility to input perturbations, resulting in declines in functional correctness ranging from 12% to 34%. In contrast, commercial models demonstrate relatively greater resilience, with performance degradation ranging from 3% to 24%. To enhance the robustness of the models against these vulnerabilities, we investigate a straightforward yet effective mitigation strategy. Our findings highlight the need for robust defense mechanisms and comprehensive evaluations during both the development and deployment phases to ensure the resilience and reliability of automated code generation systems.
HaPy-Bug -- Human Annotated Python Bug Resolution Dataset
We present HaPy-Bug, a curated dataset of 793 Python source code commits associated with bug fixes, with each line of code annotated by three domain experts. The annotations offer insights into the purpose of modified files, changes at the line level, and reviewers' confidence levels. We analyze HaPy-Bug to examine the distribution of file purposes, types of modifications, and tangled changes. Additionally, we explore its potential applications in bug tracking, the analysis of bug-fixing practices, and the development of repository analysis tools. HaPy-Bug serves as a valuable resource for advancing research in software maintenance and security.
ChatGPT Prompt Patterns for Improving Code Quality, Refactoring, Requirements Elicitation, and Software Design
This paper presents prompt design techniques for software engineering, in the form of patterns, to solve common problems when using large language models (LLMs), such as ChatGPT to automate common software engineering activities, such as ensuring code is decoupled from third-party libraries and simulating a web application API before it is implemented. This paper provides two contributions to research on using LLMs for software engineering. First, it provides a catalog of patterns for software engineering that classifies patterns according to the types of problems they solve. Second, it explores several prompt patterns that have been applied to improve requirements elicitation, rapid prototyping, code quality, refactoring, and system design.
Extracting Fix Ingredients using Language Models
Deep learning and language models are increasingly dominating automated program repair research. While previous generate-and-validate approaches were able to find and use fix ingredients on a file or even project level, neural language models are limited to the code that fits their input window. In this work we investigate how important identifier ingredients are in neural program repair and present ScanFix, an approach that leverages an additional scanner model to extract identifiers from a bug's file and potentially project-level context. We find that lack of knowledge of far-away identifiers is an important cause of failed repairs. Augmenting repair model input with scanner-extracted identifiers yields relative improvements of up to 31%. However, ScanFix is outperformed by a model with a large input window (> 5k tokens). When passing ingredients from the ground-truth fix, improvements are even higher. This shows that, with refined extraction techniques, ingredient scanning, similar to fix candidate ranking, could have the potential to become an important subtask of future automated repair systems. At the same time, it also demonstrates that this idea is subject to Sutton's bitter lesson and may be rendered unnecessary by new code models with ever-increasing context windows.
Towards a Dataset of Programming Contest Plagiarism in Java
In this paper, we describe and present the first dataset of source code plagiarism specifically aimed at contest plagiarism. The dataset contains 251 pairs of plagiarized solutions of competitive programming tasks in Java, as well as 660 non-plagiarized ones, however, the described approach can be used to extend the dataset in the future. Importantly, each pair comes in two versions: (a) "raw" and (b) with participants' repeated template code removed, allowing for evaluating tools in different settings. We used the collected dataset to compare the available source code plagiarism detection tools, including state-of-the-art ones, specifically in their ability to detect contest plagiarism. Our results indicate that the tools show significantly worse performance on the contest plagiarism because of the template code and the presence of other misleadingly similar code. Of the tested tools, token-based ones demonstrated the best performance in both variants of the dataset.
ScriptoriumWS: A Code Generation Assistant for Weak Supervision
Weak supervision is a popular framework for overcoming the labeled data bottleneck: the need to obtain labels for training data. In weak supervision, multiple noisy-but-cheap sources are used to provide guesses of the label and are aggregated to produce high-quality pseudolabels. These sources are often expressed as small programs written by domain experts -- and so are expensive to obtain. Instead, we argue for using code-generation models to act as coding assistants for crafting weak supervision sources. We study prompting strategies to maximize the quality of the generated sources, settling on a multi-tier strategy that incorporates multiple types of information. We explore how to best combine hand-written and generated sources. Using these insights, we introduce ScriptoriumWS, a weak supervision system that, when compared to hand-crafted sources, maintains accuracy and greatly improves coverage.
Can Large Language Models Understand Intermediate Representations in Compilers?
Intermediate Representations (IRs) play a critical role in compiler design and program analysis, yet their comprehension by Large Language Models (LLMs) remains underexplored. In this paper, we present an explorative empirical study evaluating the capabilities of six state-of-the-art LLMs: GPT-4, GPT-3, DeepSeek, Gemma 2, Llama 3, and Code Llama, in understanding IRs. Specifically, we assess model performance across four core tasks: control flow graph reconstruction, decompilation, code summarization, and execution reasoning. While LLMs exhibit competence in parsing IR syntax and identifying high-level structures, they consistently struggle with instruction-level reasoning, especially in control flow reasoning, loop handling, and dynamic execution. Common failure modes include misinterpreting branching instructions, omitting critical operations, and relying on heuristic reasoning rather than precise instruction-level logic. Our findings highlight the need for IR-specific enhancements in LLM design. We recommend fine-tuning on structured IR datasets and integrating control-flow-sensitive architectures to improve model effectiveness. All experimental data and source code are publicly available at
Mokav: Execution-driven Differential Testing with LLMs
It is essential to detect functional differences in various software engineering tasks, such as automated program repair, mutation testing, and code refactoring. The problem of detecting functional differences between two programs can be reduced to searching for a difference exposing test (DET): a test input that results in different outputs on the subject programs. In this paper, we propose Mokav, a novel execution-driven tool that leverages LLMs to generate DETs. Mokav takes two versions of a program (P and Q) and an example test input. When successful, Mokav generates a valid DET, a test input that leads to different outputs on P and Q. Mokav iteratively prompts an LLM with a specialized prompt to generate new test inputs. At each iteration, Mokav provides execution-based feedback regarding previously generated tests until the LLM produces a DET. We evaluate Mokav on 1,535 pairs of Python programs collected from the Codeforces competition platform and 32 pairs of programs from the QuixBugs dataset. Our experiments show that Mokav outperforms the state-of-the-art, Pynguin and Differential Prompting, by a large margin. Mokav can generate DETs for 81.7% (1,255/1,535) of the program pairs in our benchmark (versus 4.9% for Pynguin and 37.3% for Differential Prompting). We demonstrate that all components in our system, including the iterative and execution-driven approaches, contribute to its high effectiveness.
Enhancing Large Language Models for Text-to-Testcase Generation
Context: Test-driven development (TDD) is a widely employed software development practice that involves developing test cases based on requirements prior to writing the code. Although various methods for automated test case generation have been proposed, they are not specifically tailored for TDD, where requirements instead of code serve as input. Objective: In this paper, we introduce a text-to-testcase generation approach based on a large language model (GPT-3.5) that is fine-tuned on our curated dataset with an effective prompt design. Method: Our approach involves enhancing the capabilities of basic GPT-3.5 for text-to-testcase generation task that is fine-tuned on our curated dataset with an effective prompting design. We evaluated the effectiveness of our approach using a span of five large-scale open-source software projects. Results: Our approach generated 7k test cases for open source projects, achieving 78.5% syntactic correctness, 67.09% requirement alignment, and 61.7% code coverage, which substantially outperforms all other LLMs (basic GPT-3.5, Bloom, and CodeT5). In addition, our ablation study demonstrates the substantial performance improvement of the fine-tuning and prompting components of the GPT-3.5 model. Conclusions: These findings lead us to conclude that fine-tuning and prompting should be considered in the future when building a language model for the text-to-testcase generation task
A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges
The software engineering community recently has witnessed widespread deployment of AI programming assistants, such as GitHub Copilot. However, in practice, developers do not accept AI programming assistants' initial suggestions at a high frequency. This leaves a number of open questions related to the usability of these tools. To understand developers' practices while using these tools and the important usability challenges they face, we administered a survey to a large population of developers and received responses from a diverse set of 410 developers. Through a mix of qualitative and quantitative analyses, we found that developers are most motivated to use AI programming assistants because they help developers reduce key-strokes, finish programming tasks quickly, and recall syntax, but resonate less with using them to help brainstorm potential solutions. We also found the most important reasons why developers do not use these tools are because these tools do not output code that addresses certain functional or non-functional requirements and because developers have trouble controlling the tool to generate the desired output. Our findings have implications for both creators and users of AI programming assistants, such as designing minimal cognitive effort interactions with these tools to reduce distractions for users while they are programming.
Prompting Code Interpreter to Write Better Unit Tests on Quixbugs Functions
Unit testing is a commonly-used approach in software engineering to test the correctness and robustness of written code. Unit tests are tests designed to test small components of a codebase in isolation, such as an individual function or method. Although unit tests have historically been written by human programmers, recent advancements in AI, particularly LLMs, have shown corresponding advances in automatic unit test generation. In this study, we explore the effect of different prompts on the quality of unit tests generated by Code Interpreter, a GPT-4-based LLM, on Python functions provided by the Quixbugs dataset, and we focus on prompting due to the ease with which users can make use of our findings and observations. We find that the quality of the generated unit tests is not sensitive to changes in minor details in the prompts provided. However, we observe that Code Interpreter is often able to effectively identify and correct mistakes in code that it writes, suggesting that providing it runnable code to check the correctness of its outputs would be beneficial, even though we find that it is already often able to generate correctly-formatted unit tests. Our findings suggest that, when prompting models similar to Code Interpreter, it is important to include the basic information necessary to generate unit tests, but minor details are not as important.
Interactive Log Parsing via Light-weight User Feedback
Template mining is one of the foundational tasks to support log analysis, which supports the diagnosis and troubleshooting of large scale Web applications. This paper develops a human-in-the-loop template mining framework to support interactive log analysis, which is highly desirable in real-world diagnosis or troubleshooting of Web applications but yet previous template mining algorithms fails to support it. We formulate three types of light-weight user feedbacks and based on them we design three atomic human-in-the-loop template mining algorithms. We derive mild conditions under which the outputs of our proposed algorithms are provably correct. We also derive upper bounds on the computational complexity and query complexity of each algorithm. We demonstrate the versatility of our proposed algorithms by combining them to improve the template mining accuracy of five representative algorithms over sixteen widely used benchmark datasets.
A Novel Approach for Automatic Program Repair using Round-Trip Translation with Large Language Models
Research shows that grammatical mistakes in a sentence can be corrected by translating it to another language and back using neural machine translation with language models. We investigate whether this correction capability of Large Language Models (LLMs) extends to Automatic Program Repair (APR). Current generative models for APR are pre-trained on source code and fine-tuned for repair. This paper proposes bypassing the fine-tuning step and using Round-Trip Translation (RTT): translation of code from one programming language to another programming or natural language, and back. We hypothesize that RTT with LLMs restores the most commonly seen patterns in code during pre-training, i.e., performs a regression toward the mean, which removes bugs as they are a form of noise w.r.t. the more frequent, natural, bug-free code in the training data. To test this hypothesis, we employ eight recent LLMs pre-trained on code, including the latest GPT versions, and four common program repair benchmarks in Java. We find that RTT with English as an intermediate language repaired 101 of 164 bugs with GPT-4 on the HumanEval-Java dataset. Moreover, 46 of these are unique bugs that are not repaired by other LLMs fine-tuned for APR. Our findings highlight the viability of round-trip translation with LLMs as a technique for automated program repair and its potential for research in software engineering. Keywords: automated program repair, large language model, machine translation