Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation

Published on Feb 15
Β· Submitted by akhaliq on Feb 16


Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI), especially when compared with the remarkable progress made in fine-tuning Large Language Models (LLMs). While cutting-edge diffusion models such as Stable Diffusion (SD) and SDXL rely on supervised fine-tuning, their performance inevitably plateaus after seeing a certain volume of data. Recently, reinforcement learning (RL) has been employed to fine-tune diffusion models with human preference data, but it requires at least two images ("winner" and "loser" images) for each text prompt. In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion), where the diffusion model engages in competition with its earlier versions, facilitating an iterative self-improvement process. Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment. Our experiments on the Pick-a-Pic dataset reveal that SPIN-Diffusion outperforms the existing supervised fine-tuning method in aspects of human preference alignment and visual appeal right from its first iteration. By the second iteration, it exceeds the performance of RLHF-based methods across all metrics, achieving these results with less data.


This comment has been hidden

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

code release ?

Revolutionizing Text-to-Image: Discover SPIN-Diffusion's Self-Play Magic!

πŸ‘‰ Subscribe:
πŸ‘‰ Twitter:
πŸ‘‰ LMNT (Partner):

By Arxflix

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 0

No dataset linking this paper

Cite in a dataset to link it from this page.

Spaces citing this paper 1

Collections including this paper 15