recipe-distilbert-i

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0288

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.3931 1.0 152 1.7738
1.7533 2.0 304 1.5109
1.5584 3.0 456 1.4003
1.443 4.0 608 1.3296
1.3551 5.0 760 1.2270
1.2981 6.0 912 1.1870
1.2577 7.0 1064 1.1511
1.2216 8.0 1216 1.1298
1.1958 9.0 1368 1.1087
1.1685 10.0 1520 1.0858
1.1533 11.0 1672 1.0820
1.1358 12.0 1824 1.0659
1.1286 13.0 1976 1.0382
1.1128 14.0 2128 1.0468
1.11 15.0 2280 1.0399
1.094 16.0 2432 1.0382
1.0969 17.0 2584 1.0096
1.0868 18.0 2736 1.0235
1.0845 19.0 2888 1.0227
1.0855 20.0 3040 1.0288

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.