SentenceTransformer based on pankajrajdeo/UMLS-Pubmed-ST-TCE-Epoch-1
This is a sentence-transformers model finetuned from pankajrajdeo/UMLS-Pubmed-ST-TCE-Epoch-1. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: pankajrajdeo/UMLS-Pubmed-ST-TCE-Epoch-1
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pankajrajdeo/UMLS-Pubmed-ST-TCE-Epoch-1-PQA")
# Run inference
sentences = [
'Are circulating microparticles elevated in carriers of factor V Leiden?',
'This is the first study on circulating MP levels in subjects who are heterozygote for factor V Leiden. We report that circulating platelet and leukocyte MP are elevated in carriers of this mutation and may be important contributors to risk of thrombosis.',
'Isovolemic hemodilution (approximately 5% hematocrit) with albumin, pentastarch, or hetastarch solutions does not result in significant hepatic ischemia or injury assessed by histology.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 246,166 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 6 tokens
- mean: 21.28 tokens
- max: 48 tokens
- min: 9 tokens
- mean: 50.22 tokens
- max: 241 tokens
- Samples:
anchor positive Survival of women with gestational trophoblastic neoplasia and liver metastases: is it improving?
The prognosis of patients with liver metastases from GTN has improved. Outcome may be best in those patients presenting within 2.8 years of the causative pregnancy and without very large volumes of disease.
Do serum nitrites predict the response to prostaglandin-induced delivery at term?
A reduced level of NOx is associated with a prompt clinical response to PGE-induced labor. Provided we do not know the origin of NOx in the general circulation, these data indicate NOx levels as predictors of the response to PGE-induced delivery at term and support the hypothesis that labor onset is modulated by the endogenous NO activity.
Is sleep deprivation an additional stress for parents staying in hospital?
Parental sleep deprivation needs to be acknowledged and accommodated when nurses and parents negotiate the care of children in hospital.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 27,352 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 21.61 tokens
- max: 63 tokens
- min: 6 tokens
- mean: 48.56 tokens
- max: 223 tokens
- Samples:
anchor positive Is dEAD-box protein p68 regulated by β-catenin/transcription factor 4 to maintain a positive feedback loop in control of breast cancer progression?
Our findings indicate that Wnt/β-catenin signaling plays an important role in breast cancer progression through p68 upregulation.
Are obstetric medical emergency teams a step forward in maternal safety?
In the literature, there is a lack of reporting and probably of implementation of Obstetrics METs. Therefore, there is a need for more standardized experiences and reports on the implementation of various types of Obstetrics METs. We propose here a design for Obstetrics METs to be implemented in developing countries, aiming to reduce maternal mortality and morbidity resulting from obstetric hemorrhage.
Is monocyte-Induced Prostate Cancer Cell Invasion Mediated by Chemokine ligand 2 and Nuclear Factor-κB Activity?
Co-cultures with monocyte-lineage cell lines stimulated increased prostate cancer cell invasion through increased CCL2 expression and increased prostate cancer cell NF-κB activity. CCL2 and NF-κB may be useful therapeutic targets to interfere with inflammation-induced prostate cancer invasion.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 4learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truepush_to_hub
: Trueresume_from_checkpoint
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Truehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0260 | 100 | 0.0097 | - |
0.0520 | 200 | 0.0104 | - |
0.0780 | 300 | 0.0078 | - |
0.1040 | 400 | 0.0078 | - |
0.1300 | 500 | 0.0089 | - |
0.1560 | 600 | 0.0088 | - |
0.1820 | 700 | 0.0104 | - |
0.2080 | 800 | 0.0099 | - |
0.2340 | 900 | 0.0076 | - |
0.2600 | 1000 | 0.0066 | - |
0.2860 | 1100 | 0.0057 | - |
0.3120 | 1200 | 0.01 | - |
0.3380 | 1300 | 0.0074 | - |
0.3640 | 1400 | 0.0079 | - |
0.3900 | 1500 | 0.0058 | - |
0.4160 | 1600 | 0.0043 | - |
0.4420 | 1700 | 0.0073 | - |
0.4680 | 1800 | 0.0068 | - |
0.4940 | 1900 | 0.0068 | - |
0.5200 | 2000 | 0.0058 | - |
0.5460 | 2100 | 0.0075 | - |
0.5719 | 2200 | 0.0072 | - |
0.5979 | 2300 | 0.0077 | - |
0.6239 | 2400 | 0.0074 | - |
0.6499 | 2500 | 0.0066 | - |
0.6759 | 2600 | 0.007 | - |
0.7019 | 2700 | 0.0079 | - |
0.7279 | 2800 | 0.0078 | - |
0.7539 | 2900 | 0.0075 | - |
0.7799 | 3000 | 0.0048 | - |
0.8059 | 3100 | 0.0072 | - |
0.8319 | 3200 | 0.0065 | - |
0.8579 | 3300 | 0.008 | - |
0.8839 | 3400 | 0.0063 | - |
0.9099 | 3500 | 0.0066 | - |
0.9359 | 3600 | 0.0071 | - |
0.9619 | 3700 | 0.0105 | - |
0.9879 | 3800 | 0.0047 | - |
0.9999 | 3846 | - | 0.0055 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.