whisper-small-swahili
This model is a fine-tuned version of dmusingu/WHISPER-SMALL-SWAHILI-ASR-CV-14 on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.9641
- Model Preparation Time: 0.0073
- Wer: 26.3736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
---|---|---|---|---|---|
No log | 1.4286 | 10 | 2.2013 | 0.0073 | 26.2515 |
No log | 2.8571 | 20 | 2.1523 | 0.0073 | 26.3736 |
1.7887 | 4.2857 | 30 | 2.1129 | 0.0073 | 26.2515 |
1.7887 | 5.7143 | 40 | 2.0751 | 0.0073 | 26.2515 |
1.6873 | 7.1429 | 50 | 2.0428 | 0.0073 | 26.2515 |
1.6873 | 8.5714 | 60 | 2.0161 | 0.0073 | 26.3736 |
1.6873 | 10.0 | 70 | 1.9944 | 0.0073 | 26.3736 |
1.5626 | 11.4286 | 80 | 1.9788 | 0.0073 | 26.3736 |
1.5626 | 12.8571 | 90 | 1.9687 | 0.0073 | 26.3736 |
1.4991 | 14.2857 | 100 | 1.9641 | 0.0073 | 26.3736 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for pacomesimon/whisper-small-swahili
Base model
openai/whisper-large
Finetuned
dmusingu/WHISPER-SMALL-SWAHILI-ASR-CV-14