Edit model card

google-t5-v1_1-small-intra_model

This model is a fine-tuned version of google/t5-v1_1-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6973
  • Losses: [0.4, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 1.0, 1, 1, 1.0, 1, 1.0, 0.6000000000000001, 0.4, 0.2, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.8, 0.2, 1, 1, 0.4, 1, 1, 0.8, 1, 1, 1, 1, 0.6000000000000001, 1, 0.8, 0.0, 0.8, 0.0, 0.8, 1, 1, 0.4, 0.4, 0.2, 0.4, 0.8, 0.8, 0.4, 1, 0.2, 0.4, 0.8, 1, 1, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 0.8, 1, 0.0, 1, 0.0, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 1, 0.8, 0.8, 0.8, 0.8, 0.0, 1, 0.8, 0.6000000000000001, 0.0, 1, 0.8, 1, 1, 1, 1, 0.0, 0.8, 1, 1, 0.8, 1, 1, 1, 0.4, 0.4, 1, 1, 0.8, 0.8, 0.6000000000000001, 0.0, 0.6000000000000001, 0.2, 1.0, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.8, 1, 1, 0.8, 0.6000000000000001, 0.4, 0.8, 0.0, 0.2, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 0.8, 0.4, 1, 1, 1.0, 0.8, 0.8, 1, 1, 1, 0.8, 1.0, 0.4, 0.8, 0.4, 1, 0.4, 0.0, 0.8, 0.8, 0.0, 1, 0.8, 1, 0.6000000000000001, 1, 1.0, 0.8, 1.0, 0.4, 0.4, 0.8, 0.8, 0.6000000000000001, 1, 0.4, 1, 1, 0.2, 0.0, 0.6000000000000001, 0.4, 0.2, 0.2, 0.8, 0.8, 0.8, 1, 0.8, 1, 1, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 0.4, 0.0, 1, 0.8, 0.2, 0.6000000000000001, 0.6000000000000001, 0.2, 0.4, 0.8, 0.6000000000000001, 1.0, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 0.8, 0.2, 0.2, 1, 0.8, 0.8, 0.8, 1, 1, 0.0, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 1, 0.4, 1, 1, 0.8, 1, 1, 0.8, 0.8, 0.0, 0.4, 1, 1, 1.0, 1, 0.8, 0.4, 1, 0.6000000000000001, 1, 0.0, 1, 1, 0.8, 0.8, 0.6000000000000001, 1, 1, 0.2, 0.8, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 0.8, 0.4, 1, 0.2, 0.8, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 0.0, 1, 1, 0.8, 1, 1, 0.8, 1, 0.2, 0.4, 0.8, 0.6000000000000001, 0.8, 0.4, 0.4, 0.8, 1, 0.0, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.0, 0.8, 1, 0.8, 0.8, 0.8, 0.4, 0.4, 0.8, 1, 1, 1, 0.6000000000000001, 0.0, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.8, 1, 0.4, 0.2, 0.6000000000000001, 1, 1, 1, 0.8, 1, 1, 0.8, 0.4, 0.4, 0.8, 1, 0.8, 1, 0.4, 0.6000000000000001, 0.4, 1]
  • Train Loss: 0.7164

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Losses Train Loss
13.7913 1.0 99 11.9227 [1.0, 1.0, 1, 1, 1.0, 1.0, 1, 0.8888888888888888, 0.875, 0.8461538461538461, 0.875, 0.8888888888888888, 1.0, 0.8, 1.0, 0.8888888888888888, 1.0, 1.0, 1, 1.0, 1, 1.0, 1.0, 1.0, 1.0, 0.85, 1.0, 1.0, 0.8235294117647058, 0.5555555555555556, 0.8888888888888888, 1, 1.0, 10.0, 1, 0.8888888888888888, 1.0, 1.0, 1.0, 0.8888888888888888, 1.0, 1, 0.8571428571428571, 0.6666666666666666, 0.8888888888888888, 0.8888888888888888, 0.8888888888888888, 1.0, 0.8, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 1, 1.0, 0.8888888888888888, 1.0, 1, 1, 0.5555555555555556, 1.0, 1.0, 1.0, 1.0, 1, 0.8235294117647058, 1.0, 0.3333333333333333, 1.0, 0.8888888888888888, 0.8571428571428571, 1, 1, 1, 1.0, 0.8, 1.0, 1.0, 1, 1.0, 1, 0.9090909090909091, 0.875, 1.0, 1, 1.0, 0.8461538461538461, 1.0, 1.0, 1, 0.8571428571428571, 1.0, 1, 0.8888888888888888, 0.8888888888888888, 1.0, 1.0, 1.0, 0.7777777777777778, 1, 0.8666666666666667, 1.0, 1, 0.8888888888888888, 1, 0.8888888888888888, 1.0, 1.0, 1, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8, 0.8888888888888888, 1.0, 1.0, 1.0, 1.0, 0.875, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8888888888888888, 1, 0.8, 0.8, 1.0, 1, 1, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 1, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8461538461538461, 1.0, 1.0, 0.9090909090909091, 1.0, 0.8181818181818182, 0.8, 0.8888888888888888, 0.8, 1, 1.0, 1, 0.9090909090909091, 1.0, 1.0, 1.0, 0.75, 1, 1.0, 1.0, 0.8888888888888888, 0.8235294117647058, 1.0, 1.0, 1.0, 0.8235294117647058, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8235294117647058, 1.0, 1.0, 10.0, 1.0, 0.8888888888888888, 1.0, 1.0, 1, 1, 1.0, 1.0, 1, 1, 1.0, 0.8888888888888888, 1.0, 1.0, 0.8888888888888888, 0.8888888888888888, 1.0, 1.0, 0.8, 0.8888888888888888, 1.0, 1.0, 0.8888888888888888, 1.0, 0.875, 0.8888888888888888, 1.0, 0.5555555555555556, 0.8888888888888888, 1.0, 1, 0.875, 0.8888888888888888, 1.0, 10.0, 1, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1, 1.0, 1.0, 1.0, 1.0, 1.0, 1, 0.6666666666666666, 1.0, 1.0, 1.0, 0.8571428571428571, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 0.8888888888888888, 1.0, 0.7777777777777778, 1, 1.0, 1.0, 0.8461538461538461, 1.0, 0.8, 0.8888888888888888, 1.0, 1, 1.0, 1, 0.8, 1.0, 0.8, 0.8888888888888888, 1, 1.0, 1.0, 1.0, 1.0, 0.8181818181818182, 0.875, 0.7777777777777778, 0.8888888888888888, 10.0, 0.8888888888888888, 0.875, 1.0, 0.8888888888888888, 0.8888888888888888, 0.8, 1.0, 1.0, 1.0, 0.8888888888888888, 1.0, 1, 0.8125, 1.0, 0.9090909090909091, 1.0, 1.0, 0.8888888888888888, 1.0, 1.0, 0.8888888888888888, 0.8888888888888888, 0.75, 1, 1, 0.9090909090909091, 1.0, 0.75, 1, 0.875, 1.0, 1.0, 0.9, 1, 1.0, 0.4444444444444444, 1.0, 1, 1.0, 1, 1, 0.8888888888888888, 1.0, 1, 1.0, 0.8888888888888888, 1.0, 1.0, 1.0, 1.0, 0.8888888888888888, 1.0, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8, 1.0, 0.8888888888888888, 1.0, 1.0, 0.8888888888888888, 0.875, 0.4444444444444444, 1.0, 1.0, 1.0, 0.8888888888888888, 10.0, 0.7777777777777778, 1.0, 1.0, 1.0, 0.8461538461538461, 1, 0.8888888888888888, 0.8888888888888888, 0.8125, 0.6666666666666666, 1.0, 1.0, 0.8888888888888888, 1, 0.8461538461538461, 1.0] 1.0697
6.0033 2.0 198 4.6189 [1, 0.8, 1, 1, 1, 1.0, 1, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 1.0, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 1.0, 1, 1, 1, 1.0, 1, 1, 0.8, 1, 1, 0.8, 1, 0.8, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1.0, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 0.8, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 0.8, 1, 1.0, 1, 0.8, 0.8, 1, 0.8, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 1, 1, 0.8, 1, 0.8, 1, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 1, 0.8, 1.0, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 0.8, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 1] 0.9694
2.5509 3.0 297 1.0645 [1.0, 0.6000000000000001, 1.0, 1, 0.6000000000000001, 0.0, 0.6000000000000001, 0.6000000000000001, 0.4, 1.0, 0.8, 1, 1, 0.6000000000000001, 0.4, 0.4, 1.0, 1, 1, 1.0, 1, 1.0, 1.0, 0.6000000000000001, 0.4, 0.6000000000000001, 0.6000000000000001, 0.8, 0.6000000000000001, 1.0, 1.0, 0.6000000000000001, 0.6000000000000001, 1.0, 0.8, 0.8, 1.0, 1.0, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1.0, 0.8, 1, 1.0, 0.8, 1, 1.0, 0.6000000000000001, 1.0, 1.0, 1.0, 1.0, 0.6000000000000001, 1.0, 1.0, 1, 1.0, 1.0, 1.0, 1, 1.0, 0.6000000000000001, 0.6000000000000001, 1.0, 0.8, 1, 1.0, 0.6000000000000001, 1, 0.6000000000000001, 0.4, 1.0, 1.0, 1.0, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 0.8, 1.0, 1.0, 1.0, 1.0, 1.0, 1, 0.6000000000000001, 1, 1.0, 0.6000000000000001, 1.0, 0.6000000000000001, 0.6000000000000001, 1.0, 0.6000000000000001, 1.0, 1, 0.6000000000000001, 0.4, 1.0, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.6000000000000001, 0.6000000000000001, 1.0, 1, 0.4, 0.8, 0.6000000000000001, 0.6000000000000001, 1, 0.6000000000000001, 1.0, 0.6000000000000001, 1, 1, 1.0, 0.6000000000000001, 0.0, 1.0, 1, 1, 0.4, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 0.8, 0.6000000000000001, 0.6000000000000001, 0.4, 0.6000000000000001, 1, 0.6000000000000001, 0.6000000000000001, 1, 0.6000000000000001, 0.8, 1.0, 0.6000000000000001, 1.0, 1, 0.6000000000000001, 0.6000000000000001, 0.8, 0.6000000000000001, 1.0, 1.0, 1, 1, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1.0, 1, 1.0, 0.0, 1.0, 0.6000000000000001, 0.6000000000000001, 1, 0.8, 1.0, 0.6000000000000001, 0.6000000000000001, 1.0, 0.8, 1, 1, 1, 0.6000000000000001, 0.4, 0.6000000000000001, 0.4, 1.0, 1.0, 0.6000000000000001, 0.8, 0.4, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1.0, 1, 0.6000000000000001, 0.4, 1.0, 0.6000000000000001, 1, 1, 1.0, 1.0, 1, 1.0, 1.0, 1.0, 1, 0.6000000000000001, 1, 1.0, 1.0, 1.0, 1.0, 1.0, 0.6000000000000001, 1, 1, 1.0, 1.0, 1.0, 0.6000000000000001, 1, 0.0, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1.0, 0.6000000000000001, 1, 1.0, 1, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 1.0, 0.6000000000000001, 0.6000000000000001, 1.0, 0.4, 1, 1, 0.6000000000000001, 0.6000000000000001, 0.8, 1, 1.0, 1, 0.6000000000000001, 1.0, 0.8, 0.8, 0.6000000000000001, 1, 1, 0.6000000000000001, 0.6000000000000001, 1, 0.6000000000000001, 1.0, 1.0, 0.8, 0.6000000000000001, 0.0, 0.6000000000000001, 0.6000000000000001, 1.0, 0.8, 0.4, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1.0, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1, 1, 1.0, 0.4, 1, 0.6000000000000001, 0.4, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.6000000000000001, 0.4, 1, 1, 0.4, 1.0, 1.0, 0.6000000000000001, 1.0, 1.0, 0.8, 1.0, 1.0, 0.6000000000000001, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1.0, 0.6000000000000001, 1.0, 1, 1.0, 0.4, 1, 1, 0.4, 0.6000000000000001, 1.0, 1, 1.0, 0.6000000000000001, 1.0, 1.0, 1.0, 0.6000000000000001, 1, 1, 1, 1, 1.0, 0.6000000000000001, 1.0, 0.6000000000000001, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1.0, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1, 0.6000000000000001, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 1.0, 0.8, 1.0, 1.0, 1, 0.6000000000000001, 1.0, 0.4, 0.6000000000000001, 1] 0.7944
1.323 4.0 396 0.7302 [0.4, 0.8, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1.0, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.4, 1, 1, 1, 0.8, 0.8, 1, 0.4, 0.4, 0.8, 0.4, 1, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.8, 0.4, 1, 0.8, 0.4, 0.8, 1, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.0, 1, 0.4, 0.8, 0.4, 0.4, 0.4, 1, 0.8, 1.0, 0.4, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 1, 0.4, 0.8, 0.6000000000000001, 0.4, 1, 0.8, 1.0, 0.4, 0.4, 0.8, 1, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.4, 0.8, 0.4, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 1, 1, 1, 0.6000000000000001, 0.4, 0.8, 0.0, 1, 0.6000000000000001, 0.4, 0.8, 0.4, 0.4, 1, 1, 1, 0.8, 0.8, 1.0, 0.8, 1.0, 0.4, 0.4, 0.4, 1, 1.0, 0.8, 0.0, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 1.0, 0.4, 1, 0.4, 0.4, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 1, 0.8, 0.4, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 0.4, 1.0, 0.8, 0.4, 1.0, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 0.4, 1, 1, 1, 1, 0.8, 0.4, 1, 0.8, 0.0, 0.8, 1.0, 0.8, 0.4, 0.4, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 1, 1, 0.4, 0.8, 1, 1, 0.4, 0.8, 0.4, 0.4, 0.8, 1, 1, 1, 0.8, 0.4, 0.8, 0.4, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.4, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 0.6000000000000001, 0.4, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.0, 1] 0.7365
1.1398 5.0 495 0.6483 [0.4, 0.8, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1.0, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.4, 1, 1, 1, 0.8, 0.8, 1, 0.4, 0.4, 0.8, 0.4, 1, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.8, 0.4, 1, 0.8, 0.4, 0.8, 1, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.0, 1, 0.4, 0.8, 0.4, 0.4, 0.4, 1, 0.8, 1.0, 0.4, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 1, 0.4, 0.8, 0.6000000000000001, 0.4, 1, 0.8, 1.0, 0.4, 0.4, 0.8, 1, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.4, 0.8, 0.4, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 1, 1, 1, 0.6000000000000001, 0.4, 0.8, 0.0, 1, 0.6000000000000001, 0.4, 0.8, 0.4, 0.4, 1, 1, 1, 0.8, 0.8, 1.0, 0.8, 1.0, 0.4, 0.4, 0.4, 1, 1.0, 0.8, 0.0, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 1.0, 0.4, 1, 0.4, 0.4, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 1, 0.8, 0.4, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 0.4, 1.0, 0.8, 0.4, 1.0, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 0.4, 1, 1, 1, 1, 0.8, 0.4, 1, 0.8, 0.0, 0.8, 1.0, 0.8, 0.4, 0.4, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 1, 1, 0.4, 0.8, 1, 1, 0.4, 0.8, 0.4, 0.4, 0.8, 1, 1, 1, 0.8, 0.4, 0.8, 0.4, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.4, 0.8, 0.6000000000000001, 1, 1, 1, 0.8, 1, 1, 0.4, 0.4, 0.6000000000000001, 0.4, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.0, 1] 0.7370
0.9565 6.0 594 0.6207 [0.0, 0.8, 0.0, 1, 0.4, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 1.0, 1, 1, 1, 1, 1.0, 0.6000000000000001, 0.4, 0.2, 0.2, 1, 0.8, 0.0, 0.4, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.0, 0.0, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.0, 1, 1, 1, 0.4, 1, 1, 0.4, 1, 1, 1, 0.8, 0.8, 1, 0.4, 0.0, 0.8, 0.4, 1, 1, 1, 0.4, 0.4, 0.2, 0.4, 1, 0.8, 0.4, 1, 0.2, 0.0, 1, 1, 1, 1.0, 1, 1, 0.6000000000000001, 0.8, 1, 0.8, 1, 0.0, 1, 0.0, 0.4, 0.8, 0.8, 1, 0.2, 1, 0.0, 1, 0.8, 1, 0.4, 0.8, 0.4, 1, 0.8, 1.0, 0.0, 1, 0.4, 0.8, 1, 1, 1, 0.0, 0.2, 1, 1, 0.8, 1, 0.8, 1, 0.4, 0.4, 1, 1, 0.4, 0.8, 0.6000000000000001, 0.4, 0.6000000000000001, 0.2, 1.0, 0.4, 0.8, 0.8, 1, 0.8, 0.8, 1.0, 1, 0.8, 0.8, 1, 1, 1, 0.4, 0.4, 0.8, 0.0, 0.2, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 0.4, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 1, 1, 1, 1, 1.0, 0.4, 1, 0.4, 1, 0.4, 0.4, 0.8, 0.8, 0.4, 1, 0.4, 1, 0.2, 1, 1.0, 0.8, 1.0, 0.4, 0.4, 0.4, 1, 1.0, 1, 0.4, 1, 1, 0.2, 0.4, 0.6000000000000001, 0.4, 0.8, 0.2, 0.8, 1, 1, 0.2, 0.8, 1, 1, 0.2, 0.8, 0.2, 0.4, 1, 0.4, 0.4, 1, 0.8, 0.2, 0.6000000000000001, 1, 0.8, 0.4, 0.8, 0.8, 1.0, 0.8, 1, 0.8, 1, 1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.2, 0.2, 0.8, 0.8, 1, 0.8, 1, 1, 0.4, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.4, 1, 0.4, 1, 1, 0.8, 1, 1, 0.8, 0.8, 0.0, 0.4, 1, 1, 1.0, 1, 0.8, 0.4, 1, 0.6000000000000001, 1, 0.4, 1, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.2, 0.0, 0.6000000000000001, 0.2, 0.8, 0.6000000000000001, 0.8, 0.8, 1.0, 0.2, 0.4, 1.0, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 0.4, 1, 1, 1, 1, 1, 0.8, 1, 0.2, 0.0, 0.8, 1.0, 0.8, 0.0, 0.8, 0.4, 1, 0.0, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 0.0, 0.4, 0.8, 1, 0.4, 0.4, 0.6000000000000001, 0.0, 0.8, 0.4, 0.8, 0.4, 1, 1, 0.8, 0.4, 1, 0.4, 1, 0.4, 0.8, 0.6000000000000001, 1, 1, 1, 0.8, 1, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.0, 1] 0.7070
0.8479 7.0 693 0.5786 [0.0, 1, 0.0, 0.4, 0.8, 1.0, 0.8, 1, 0.6000000000000001, 1.0, 1, 0.4, 1, 1, 1, 0.6000000000000001, 0.4, 0.2, 0.2, 1, 0.2, 0.0, 0.0, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.0, 0.0, 0.8, 0.8, 0.4, 1, 1, 1, 0.0, 1, 1, 1, 0.4, 1, 0.4, 0.0, 1, 1, 1, 1, 0.6000000000000001, 1, 0.0, 0.0, 1, 0.0, 1, 1, 1, 0.0, 0.4, 0.2, 0.4, 1, 1, 1, 1, 0.2, 0.0, 1, 1, 1, 1.0, 1, 1, 0.6000000000000001, 0.8, 1, 1, 1, 0.0, 1, 0.0, 0.0, 0.8, 0.2, 1, 0.2, 1.0, 0.4, 1, 0.8, 1, 0.0, 1, 0.0, 1, 0.8, 1.0, 0.0, 1, 1, 0.2, 1, 1, 1, 0.0, 0.2, 1, 1, 0.8, 1, 0.2, 1, 0.4, 0.8, 1, 1, 1, 1, 1.0, 0.4, 0.6000000000000001, 0.2, 1, 0.8, 0.8, 1, 1, 1, 1, 1.0, 1, 0.2, 0.8, 1, 1, 1, 0.4, 0.4, 0.8, 0.0, 0.2, 1, 1, 0.4, 1, 1, 1, 0.4, 0.2, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 0.4, 1, 0.4, 0.0, 1, 0.8, 0.4, 1, 0.4, 1, 0.2, 1, 1.0, 1, 1.0, 1, 0.0, 0.8, 1, 1.0, 1, 0.4, 1, 1, 0.2, 0.8, 0.6000000000000001, 0.4, 1, 0.2, 0.2, 1, 1, 0.2, 1, 1, 1, 0.2, 1, 0.2, 0.4, 1, 0.4, 1, 1.0, 1, 0.2, 0.6000000000000001, 1.0, 0.8, 0.4, 1, 0.6000000000000001, 1.0, 0.8, 1, 1, 1, 1, 1, 0.4, 0.4, 1, 1, 0.2, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.0, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1, 1, 0.4, 0.8, 1, 1, 0.4, 1, 1, 0.6000000000000001, 1, 1, 1, 1, 0.0, 0.4, 1, 1, 1.0, 1, 1, 1, 1, 0.6000000000000001, 1, 0.8, 1, 1, 0.8, 1, 0.6000000000000001, 1, 0.2, 0.2, 0.0, 1, 0.2, 1, 0.6000000000000001, 1, 0.8, 1, 0.2, 0.8, 1, 0.2, 1, 0.6000000000000001, 0.0, 1, 0.8, 0.0, 1, 1, 1, 1, 1, 0.8, 1, 0.2, 0.4, 0.8, 1, 0.2, 0.0, 0.8, 0.0, 1, 0.0, 0.6000000000000001, 0.6000000000000001, 1, 1, 1, 0.6000000000000001, 1, 1.0, 1, 0.8, 0.0, 0.4, 1, 1, 0.4, 0.4, 0.6000000000000001, 0.0, 1, 0.0, 1, 0.8, 1, 1, 0.8, 0.8, 1, 0.0, 1, 0.8, 1, 1, 1, 0.4, 1, 1, 1, 1, 0.8, 0.0, 0.4, 0.0, 1.0, 0.2, 1, 0.4, 0.6000000000000001, 0.4, 1] 0.7231
0.7582 8.0 792 0.6239 [0.4, 1, 0.4, 1, 1, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 1.0, 1.0, 0.4, 1, 0.8, 1, 1, 0.4, 0.8, 0.8, 1, 0.8, 1, 1, 1, 1, 1, 0.8, 1, 1, 0.4, 1, 0.8, 1, 0.4, 1, 1.0, 1, 0.0, 1, 0.8, 0.8, 0.4, 1, 1, 0.4, 1, 1, 1, 1, 0.6000000000000001, 1, 0.4, 0.4, 1, 0.4, 1, 1, 1, 0.4, 0.4, 0.2, 0.4, 0.8, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 0.6000000000000001, 0.8, 1, 0.8, 1, 0.0, 1, 0.0, 0.4, 0.8, 0.8, 0.8, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 1, 1.0, 0.4, 1, 1, 0.2, 1, 0.8, 1, 0.0, 0.8, 1, 1, 1, 1, 0.2, 1, 0.4, 0.4, 1, 1, 1, 1, 1, 0.4, 1, 1, 1.0, 1, 0.8, 1, 1, 1, 0.8, 1.0, 1, 1, 0.8, 1, 1, 1, 1, 0.4, 1, 0.4, 0.2, 1, 1, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.6000000000000001, 1, 0.8, 1, 1, 0.6000000000000001, 1, 1, 1, 0.4, 1, 1, 1, 0.2, 1, 1.0, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 0.2, 0.4, 1, 1, 0.8, 1, 0.8, 1, 1, 0.8, 1, 1, 1, 0.8, 1, 1.0, 1, 1, 1, 0.4, 1, 1, 0.2, 0.8, 1.0, 0.8, 0.4, 1, 0.6000000000000001, 1.0, 0.8, 0.8, 1, 1, 0.8, 1, 0.4, 0.4, 0.8, 1, 0.2, 1, 1, 1, 1, 1, 1, 1, 0.4, 1, 0.6000000000000001, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 1, 0.8, 1, 1, 0.8, 1, 0.0, 1, 1, 1, 1.0, 1, 1, 1, 1, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1, 0.6000000000000001, 1, 1, 1, 1, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 1, 0.4, 1, 0.8, 0.4, 1, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 1, 1, 1, 1, 1, 0.8, 0.4, 1, 1, 1, 0.8, 1, 1, 0.0, 0.4, 1, 1, 0.0, 0.6000000000000001, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.4, 0.4, 1, 1, 1, 1, 1, 1, 1, 1, 0.8, 0.4, 1, 1, 0.4, 0.8, 1, 0.0, 0.8, 0.4, 0.8, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 1.0, 1, 0.8, 1, 0.6000000000000001, 0.0, 1] 0.8384
0.7579 9.0 891 0.5293 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 0.9972

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.6.1
  • Tokenizers 0.14.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for owanr/google-t5-v1_1-small-intra_model

Finetuned
(11)
this model