Edit model card

SChem5Labels-google-t5-v1_1-base-intra_model

This model is a fine-tuned version of google/t5-v1_1-base on the None dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.9822
  • Loss: nan
  • Losses: [1, 1, 0.6000000000000001, 1, 0.8, 1, 1, 0.4, 1, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 0.8, 1.0, 0.4, 1, 0.6000000000000001, 0.8, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 0.8, 1.0, 0.6000000000000001, 1, 0.4, 0.4, 1, 0.4, 1, 1, 1, 0.8, 0.4, 1, 1, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 1, 0.4, 0.8, 0.8, 1, 0.8, 1, 0.0, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 1, 0.4, 0.4, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.4, 0.0, 0.6000000000000001, 0.8, 0.8, 0.4, 0.4, 0.4, 0.6000000000000001, 0.0, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.0, 0.4, 0.4, 1, 0.0, 0.6000000000000001, 0.8, 0.6000000000000001, 0.8, 0.4, 0.4, 0.8, 0.8, 0.4, 0.4, 0.8, 0.4, 0.8, 0.8, 1, 0.4, 0.8, 0.8, 0.4, 0.4, 0.8, 0.4, 0.4, 1, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 0.4, 0.8, 0.4, 0.8, 0.4, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 0.4, 1, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 1, 0.8, 1, 0.4, 0.4, 1, 0.8, 0.8, 1, 1, 1, 0.8, 1, 0.4, 0.6000000000000001, 0.4, 0.4, 0.4, 1, 0.4, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 0.4, 0.6000000000000001, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 1.0, 0.8, 1.0, 1, 0.4, 0.8, 0.8, 1, 1, 0.8, 1, 1.0, 1, 0.4, 1, 0.6000000000000001, 0.8, 1, 1.0, 1, 0.6000000000000001, 0.4, 0.4, 0.6000000000000001, 1.0, 0.8, 0.8, 0.4, 1, 1, 1, 0.8, 0.8, 1.0, 0.8, 0.8, 0.6000000000000001, 0.8, 0.4, 0.8, 1, 1, 1.0, 0.8, 1.0, 1.0, 0.8, 1, 0.8, 0.8, 1.0, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 1, 0.4, 0.8, 0.4, 0.8, 0.8, 1, 1, 0.4, 0.4, 1, 0.8, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 1, 0.6000000000000001, 0.4, 1, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 0.8, 0.4, 0.4, 1, 1, 1, 0.4, 0.8, 0.4, 1, 1, 0.4, 1.0, 1.0, 0.4, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.4, 0.8, 0.4, 0.0, 0.8, 0.4, 0.4, 0.8, 1, 1, 0.4, 0.6000000000000001, 1, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 1.0, 1, 1.0, 0.4, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Train Loss Validation Loss Losses
405015552.0 1.0 99 0.8747 389655488.0 [0.8, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.6000000000000001, 0.8, 0.8, 1, 1, 1, 0.8, 1, 0.6000000000000001, 1, 1, 1, 1, 1, 1.0, 0.4, 1, 1, 0.8, 0.2, 1, 1, 1, 1, 0.6000000000000001, 1, 1, 1, 1, 1.0, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 0.6000000000000001, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 0.8, 1, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 1, 1, 0.8, 1, 1, 1, 0.8, 0.0, 1, 0.4, 1, 1, 1, 1, 1, 1, 1, 0.6000000000000001, 1, 1, 1.0, 1, 0.8, 1, 1, 0.0, 1, 1, 1, 1, 1, 0.8, 1.0, 0.6000000000000001, 1, 1, 1, 1, 1, 1, 0.6000000000000001, 0.0, 1.0, 1, 1, 0.2, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 0.8, 0.2, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 1.0, 1, 1, 1, 1, 0.0, 1, 1, 0.6000000000000001, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 1, 1, 1.0, 0.4, 0.6000000000000001, 1, 0.8, 0.8, 0.4, 1, 0.4, 1, 1, 0.4, 1, 1, 1.0, 1, 1, 0.8, 1.0, 0.8, 1, 1, 1, 0.4, 0.2, 0.8, 1, 0.4, 0.8, 1, 1, 0.8, 0.8, 1, 1, 0.6000000000000001, 1, 0.4, 1, 1, 1, 1, 1, 1, 1.0, 0.8, 1, 1, 1, 1.0, 1, 1, 0.8, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 0.4, 1, 0.4, 1, 1, 0.6000000000000001, 1.0, 1, 0.8, 1, 0.6000000000000001, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 0.6000000000000001, 1.0, 0.4, 1, 1, 0.6000000000000001, 1, 0.8, 0.8, 1, 1, 1, 1, 0.6000000000000001, 1, 1.0, 0.4, 1, 1, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.2, 0.4, 1, 1.0, 1, 0.8, 0.8, 0.8, 1, 1.0, 1, 0.4, 1, 1, 0.6000000000000001, 1, 0.4, 1, 0.8, 0.6000000000000001, 1, 1, 0.0, 0.8, 1, 1, 0.6000000000000001, 0.6000000000000001, 1, 0.8, 1, 1, 1, 1, 0.4, 1, 0.4, 1, 1, 1, 1, 0.4, 0.6000000000000001, 1, 1, 1, 0.8, 1.0, 1, 1.0, 1, 1.0, 1, 1, 0.2, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.4, 1, 1, 1, 1, 1, 1, 0.0, 0.8, 0.6000000000000001, 1]
414025830.4 2.0 198 0.7287 389655456.0 [0.8, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1.0, 0.8, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.2, 0.8, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.8, 0.8, 0.2, 0.8, 0.8, 0.4, 0.8, 1, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 1, 0.4, 0.8, 0.2, 0.8, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.2, 1, 0.8, 1, 0.8, 0.4, 0.8, 0.0, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 1, 1, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.0, 1.0, 1, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 1, 0.6000000000000001, 0.0, 0.0, 0.8, 1, 0.2, 0.8, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 1, 0.8, 1.0, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 1, 1, 1, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 1.0, 0.8, 0.8, 0.0, 0.4, 1, 1, 1, 1, 0.8, 0.6000000000000001, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.6000000000000001, 0.6000000000000001, 0.8, 0.4, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.4, 0.2, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.4, 0.8, 0.6000000000000001, 0.6000000000000001, 0.0, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 1, 0.8, 0.8, 0.8, 1.0, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.8, 1, 0.6000000000000001, 0.8, 0.0, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 0.8, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 0.8, 0.0, 1, 0.8, 0.0, 0.6000000000000001, 0.8, 1.0, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.0, 1, 0.8, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 1, 1, 1, 0.0, 0.8, 1, 0.8, 0.0, 0.2, 0.8, 0.4, 0.8, 1, 1, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.0, 1, 1.0, 0.0, 0.0, 0.8, 0.8, 0.2, 0.0, 0.2, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1.0, 0.0, 0.8, 1.0, 0.8, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 1]
408233932.8 3.0 297 0.7276 389655456.0 [0.8, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1.0, 0.8, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.2, 0.8, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.8, 0.8, 0.2, 0.8, 0.8, 0.4, 0.8, 1, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 1, 0.4, 0.8, 0.2, 0.8, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.2, 1, 0.8, 1, 0.8, 0.4, 0.8, 0.0, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 1, 1, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.0, 1.0, 1, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 1, 0.6000000000000001, 0.0, 0.0, 0.8, 1, 0.2, 0.8, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 1, 0.8, 1.0, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 1, 1, 1, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 1.0, 0.8, 0.8, 0.0, 0.4, 1, 1, 1, 1, 0.8, 0.6000000000000001, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 0.8, 0.4, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.4, 0.2, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.4, 0.8, 0.6000000000000001, 0.6000000000000001, 0.0, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 1, 0.8, 0.8, 0.8, 1.0, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.8, 1, 0.6000000000000001, 0.8, 0.0, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 0.8, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 0.8, 0.0, 1, 0.8, 0.0, 0.6000000000000001, 0.8, 1.0, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.0, 1, 0.8, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.0, 0.8, 1, 0.8, 0.0, 0.2, 0.8, 0.4, 0.8, 1, 1, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.0, 1, 1.0, 0.0, 0.0, 0.8, 0.8, 0.2, 0.0, 0.2, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1.0, 0.0, 0.8, 1.0, 0.8, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 1]
421449779.2 4.0 396 0.7276 389655456.0 [0.8, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1.0, 0.8, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.2, 0.8, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.8, 0.8, 0.2, 0.8, 0.8, 0.4, 0.8, 1, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 1, 0.4, 0.8, 0.2, 0.8, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.2, 1, 0.8, 1, 0.8, 0.4, 0.8, 0.0, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 1, 1, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.0, 1.0, 1, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 1, 0.6000000000000001, 0.0, 0.0, 0.8, 1, 0.2, 0.8, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 1, 0.8, 1.0, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 1, 1, 1, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 1.0, 0.8, 0.8, 0.0, 0.4, 1, 1, 1, 1, 0.8, 0.6000000000000001, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 0.8, 0.4, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.4, 0.2, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.4, 0.8, 0.6000000000000001, 0.6000000000000001, 0.0, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 1, 0.8, 0.8, 0.8, 1.0, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.8, 1, 0.6000000000000001, 0.8, 0.0, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 0.8, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 0.8, 0.0, 1, 0.8, 0.0, 0.6000000000000001, 0.8, 1.0, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.0, 1, 0.8, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.0, 0.8, 1, 0.8, 0.0, 0.2, 0.8, 0.4, 0.8, 1, 1, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.0, 1, 1.0, 0.0, 0.0, 0.8, 0.8, 0.2, 0.0, 0.2, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1.0, 0.0, 0.8, 1.0, 0.8, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 1]
402870886.4 5.0 495 0.7365 389655424.0 [0.4, 0.8, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1.0, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.4, 1, 1, 1, 0.8, 0.8, 1, 0.4, 0.4, 0.8, 0.4, 1, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.8, 0.4, 1, 0.8, 0.4, 0.8, 1, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.0, 1, 0.4, 0.8, 0.4, 0.4, 0.4, 1, 0.8, 1.0, 0.4, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 1, 0.4, 0.8, 0.6000000000000001, 0.4, 1, 0.8, 1.0, 0.4, 0.4, 0.8, 1, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.4, 0.8, 0.4, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 1, 1, 1, 0.6000000000000001, 0.4, 0.8, 0.0, 1, 0.6000000000000001, 0.4, 0.8, 0.4, 0.4, 1, 1, 1, 0.8, 0.8, 1.0, 0.8, 1.0, 0.4, 0.4, 0.4, 1, 1.0, 0.8, 0.0, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 1.0, 0.4, 1, 0.4, 0.4, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 1, 0.8, 0.4, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 0.4, 1.0, 0.8, 0.4, 1.0, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 0.4, 1, 1, 1, 1, 0.8, 0.4, 1, 0.8, 0.0, 0.8, 1.0, 0.8, 0.4, 0.4, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 1, 1, 0.4, 0.8, 1, 1, 0.4, 0.8, 0.4, 0.4, 0.8, 1, 1, 1, 0.8, 0.4, 0.8, 0.4, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.4, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 0.6000000000000001, 0.4, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.0, 1]
418429363.2 6.0 594 0.7365 389655424.0 [0.4, 0.8, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1.0, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.4, 1, 1, 1, 0.8, 0.8, 1, 0.4, 0.4, 0.8, 0.4, 1, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.8, 0.4, 1, 0.8, 0.4, 0.8, 1, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.0, 1, 0.4, 0.8, 0.4, 0.4, 0.4, 1, 0.8, 1.0, 0.4, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 1, 0.4, 0.8, 0.6000000000000001, 0.4, 1, 0.8, 1.0, 0.4, 0.4, 0.8, 1, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.4, 0.8, 0.4, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 1, 1, 1, 0.6000000000000001, 0.4, 0.8, 0.0, 1, 0.6000000000000001, 0.4, 0.8, 0.4, 0.4, 1, 1, 1, 0.8, 0.8, 1.0, 0.8, 1.0, 0.4, 0.4, 0.4, 1, 1.0, 0.8, 0.0, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 1.0, 0.4, 1, 0.4, 0.4, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 1, 0.8, 0.4, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 0.4, 1.0, 0.8, 0.4, 1.0, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 0.4, 1, 1, 1, 1, 0.8, 0.4, 1, 0.8, 0.0, 0.8, 1.0, 0.8, 0.4, 0.4, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 1, 1, 0.4, 0.8, 1, 1, 0.4, 0.8, 0.4, 0.4, 0.8, 1, 1, 1, 0.8, 0.4, 0.8, 0.4, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.4, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 0.6000000000000001, 0.4, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.0, 1]

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.6.1
  • Tokenizers 0.14.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for owanr/SChem5Labels-google-t5-v1_1-base-intra_model

Finetuned
(12)
this model