Model Card for Diffusion Policy / PushT
Diffusion Policy (as per Diffusion Policy: Visuomotor Policy
Learning via Action Diffusion) trained for the PushT
environment from gym-pusht.
How to Get Started with the Model
See the LeRobot library (particularly the evaluation script) for instructions on how to load and evaluate this model.
Training Details
The model was trained using LeRobot's training script and with the pusht dataset, using this command:
python lerobot/scripts/train.py \
hydra.run.dir=outputs/train/diffusion_pusht \
hydra.job.name=diffusion_pusht \
policy=diffusion training.save_model=true \
env=pusht \
env.task=PushT-v0 \
dataset_repo_id=lerobot/pusht \
training.offline_steps=200000 \
training.save_freq=20000 \
training.eval_freq=10000 \
eval.n_episodes=50 \
wandb.enable=true \
wandb.disable_artifact=true \
device=cuda
The training curves may be found at https://wandb.ai/alexander-soare/Alexander-LeRobot/runs/508luayd.
This took about 7 hours to train on an Nvida RTX 3090.
Note: At the time of training, this PR was also incorporated.
Evaluation
The model was evaluated on the PushT
environment from gym-pusht and compared to a similar model trained with the original Diffusion Policy code. There are two evaluation metrics on a per-episode basis:
- Maximum overlap with target (seen as
eval/avg_max_reward
in the charts above). This ranges in [0, 1]. - Success: whether or not the maximum overlap is at least 95%.
Here are the metrics for 500 episodes worth of evaluation. For the succes rate we add an extra row with confidence bounds. This assumes a uniform prior over success probability and computes the beta posterior, then calculates the mean and lower/upper confidence bounds (with a 68.2% confidence interval centered on the mean). The "Theirs" column is for an equivalent model trained on the original Diffusion Policy repository and evaluated on LeRobot (the model weights may be found in the original_dp_repo
branch of this respository).
Ours | Theirs | |
---|---|---|
Average max. overlap ratio | 0.959 | 0.957 |
Success rate for 500 episodes (%) | 63.8 | 64.2 |
Beta distribution lower/mean/upper (%) | 61.6 / 63.7 / 65.9 | 62.0 / 64.1 / 66.3 |
The results of each of the individual rollouts may be found in eval_info.json.
- Downloads last month
- 12