File size: 17,911 Bytes
d975774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea48ed6
 
5789b46
ea48ed6
 
5789b46
 
 
98689a8
5789b46
 
 
 
 
 
 
 
 
 
 
 
 
ea48ed6
 
5789b46
fac2446
5789b46
fac2446
 
92e6458
fac2446
b93ddae
92e6458
fac2446
 
 
 
5789b46
 
 
deccdb8
 
fac2446
deccdb8
ea48ed6
5789b46
 
 
ea48ed6
5789b46
 
 
 
 
 
 
 
 
 
 
 
ea48ed6
 
 
 
 
 
 
deccdb8
 
 
 
ea48ed6
 
 
deccdb8
8a0202c
ea48ed6
 
 
 
 
 
 
 
 
deccdb8
ea48ed6
 
 
 
 
 
8a0202c
 
ea48ed6
 
 
 
 
8a0202c
ea48ed6
deccdb8
ea48ed6
8a0202c
 
 
ea48ed6
deccdb8
ea48ed6
8a0202c
 
ea48ed6
 
deccdb8
 
5789b46
ea48ed6
 
 
 
 
 
 
 
 
 
 
 
5789b46
 
 
deccdb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5789b46
 
 
ea48ed6
 
 
 
 
 
 
 
 
 
 
fac2446
5789b46
 
ea48ed6
 
 
 
 
 
 
5789b46
 
 
 
ea48ed6
5789b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fac2446
 
 
 
29b3d50
fac2446
 
 
 
29b3d50
f592fa6
 
 
 
 
 
 
 
 
29b3d50
5789b46
 
 
ea48ed6
 
 
 
5789b46
 
 
ea48ed6
 
 
 
 
 
 
5789b46
 
 
ea48ed6
 
 
5789b46
 
 
ea48ed6
 
 
5789b46
 
 
 
 
 
 
 
 
ea48ed6
5789b46
 
 
fac2446
ea48ed6
 
 
 
 
 
 
 
 
5789b46
 
 
ea48ed6
 
 
 
 
fac2446
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
---
license: apache-2.0
tags:
- openchat
- mistral
- C-RLFT
datasets:
- openchat/openchat_sharegpt4_dataset
- kaist-ai/Feedback-Collection
- imone/OpenOrca_FLAN
- LDJnr/LessWrong-Amplify-Instruct
- LDJnr/Pure-Dove
- LDJnr/Verified-Camel
- tiedong/goat
- glaiveai/glaive-code-assistant
- meta-math/MetaMathQA
- OpenAssistant/oasst_top1_2023-08-25
- TIGER-Lab/MathInstruct
library_name: transformers
pipeline_tag: text-generation
---
<div align="center">
  <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
  <h1>Advancing Open-source Language Models with Mixed-Quality Data</h1>
</div>

<p align="center" style="margin-top: 0px;">
  <a href="https://openchat.team">
    <img src="https://github.com/alpayariyak/openchat/blob/master/assets/logo_nobg.png?raw=true" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style=" margin-right: 5px;">Online Demo</span>
  </a> |
  <a href="https://github.com/imoneoi/openchat">
    <img src="https://camo.githubusercontent.com/4133dc1cd4511d4a292b84ce10e52e4ed92569fb2a8165381c9c47be5edc2796/68747470733a2f2f6564656e742e6769746875622e696f2f537570657254696e7949636f6e732f696d616765732f706e672f6769746875622e706e67" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style=" margin-right: 5px;">GitHub</span>
  </a> |
  <a href="https://arxiv.org/pdf/2309.11235.pdf">
    <img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text" style="margin-right: 5px;">Paper</span>
  </a> |
  <a href="https://discord.gg/pQjnXvNKHY">
    <img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
    <span class="link-text">Discord</span>
  </a>
</p>

<hr>
<div style="background-color: white; padding: 0.7em; border-radius: 0.5em; color: black; display: flex; flex-direction: column; justify-content: center; text-align: center; ont-size: 0.5em;">
  <a href="https://huggingface.co/openchat/openchat_3.5" style="text-decoration: none; color: black;">
    <span style="font-size: 1.7em; font-family: 'Helvetica'; letter-spacing: 0.1em; font-weight: bold; color: black;">OPENCHAT</span><span style="font-size: 1.8em; font-family: 'Helvetica'; color: #3c72db; ">3.5</span>
        <span style="font-size: 0.7em;  font-family: 'Helvetica'; color:  white; vertical-align: top;  background-color:red;  border-radius: 6em; padding: 0.066em 0.4em; letter-spacing: 0.1em; font-weight: bold;">1210</span>
    <span style="font-size: 0.85em; font-family: 'Helvetica'; color: black;">
      <br> ๐Ÿ† The Overall Best Performing Open Source 7B Model ๐Ÿ†
    <br> ๐Ÿค– Outperforms <span style="font-weight: bold;">ChatGPT</span> (March) and <span style="font-weight: bold;">Grok-1</span> ๐Ÿค–
      <br> ๐Ÿš€<span style="font-size: 1em; font-family: 'Helvetica'; color: black; font-weight: bold;">15</span>-point improvement in Coding over <span style="font-size: 0.9em;
      font-family: 'Helvetica'; color: black; font-weight: bold;">OpenChat-3.5๐Ÿš€</span>
      <br><br><span style="font-size: 1em; font-family: 'Helvetica'; color: #3c72db; font-weight: bold;">New Features</span>
      <br> ๐Ÿ’ก 2 Modes: Coding + Generalist, Mathematical Reasoning ๐Ÿ’ก
      <br> ๐Ÿง‘โ€โš–๏ธ Experimental support for Evaluator and Feedback capabilities ๐Ÿง‘โ€โš–๏ธ
    </span>
  </a>
</div>

<div style="display: flex; justify-content: center; align-items: center">
  <img src="https://github.com/alpayariyak/openchat/blob/master/assets/1210bench.png?raw=true" style="width: 100%; border-radius: 1em">
</div>

<div>
<h3> Table of Contents</h3>
</div>

1. [Usage](#usage)
2. [Benchmarks](#benchmarks)
3. [Limitations](#limitations)
4. [License](#license)
5. [Dataset Details](#dataset-details)
6. [Citation](#citation)
7. [Acknowledgements](#acknowledgements)


<div align="center">
<h2> Usage </h2>
</div>

To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.

Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.

If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.

| Model             | Size | Context | Weights                                                          | Serving                                                                                                          |
|-------------------|------|---------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| OpenChat 3.5 1210 | 7B   | 8192    | [Huggingface](https://huggingface.co/openchat/openchat_3.5_1210) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5_1210 --engine-use-ray --worker-use-ray` |

<details>
  <summary>Example request (click to expand)</summary>

๐Ÿ’ก **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks

```bash
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_3.5",
    "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
  }'
```

๐Ÿงฎ **Mathematical Reasoning Mode**: Tailored for solving math problems

```bash
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_3.5",
    "condition": "Math Correct",
    "messages": [{"role": "user", "content": "10.3 โˆ’ 7988.8133 = "}]
  }'
```

</details>

### Conversation templates

๐Ÿ’ก **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks

```
GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
```

๐Ÿงฎ **Mathematical Reasoning Mode**: Tailored for solving math problems

```
Math Correct User: 10.3 โˆ’ 7988.8133=<|end_of_turn|>Math Correct Assistant:
```

โš ๏ธ **Notice:** Remember to set `<|end_of_turn|>` as end of generation token.

The default (GPT4 Correct) template is also available as the integrated `tokenizer.chat_template`,
which can be used instead of manually specifying the template:

```python
messages = [
    {"role": "user", "content": "Hello"},
    {"role": "assistant", "content": "Hi"},
    {"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
```

<div align="center">
<h2> (Experimental) Evaluator / Feedback Capabilities </h2>
</div>
We've included evaluator capabilities in this release to advance open-source models as evaluators. You can use `Default Mode (GPT4 Correct)` with the following prompt (same as [Prometheus](https://huggingface.co/datasets/kaist-ai/Feedback-Collection)) to evaluate a response.

```
###Task Description:
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{orig_instruction}

###Response to evaluate:
{orig_response}

###Reference Answer (Score 5):
{orig_reference_answer}

###Score Rubrics:
[{orig_criteria}]
Score 1: {orig_score1_description}
Score 2: {orig_score2_description}
Score 3: {orig_score3_description}
Score 4: {orig_score4_description}
Score 5: {orig_score5_description}

###Feedback: 
```
<div align="center">
<h2> Benchmarks </h2>
</div>

| Model              | # Params | Average  | MT-Bench     | HumanEval       | BBH MC   | AGIEval  | TruthfulQA    | MMLU         | GSM8K        | BBH CoT     |
|--------------------|----------|----------|--------------|-----------------|----------|----------|---------------|--------------|--------------|-------------|
| OpenChat-3.5-1210  | **7B**   | **63.8** | 7.76         | **68.9**        | **49.5** | **48.0** | **61.8**      | 65.3         | **77.3**     | 61.8        |
| OpenChat-3.5       | **7B**   | 61.6     | 7.81         | 55.5            | 47.6     | 47.4     | 59.1          | 64.3         | **77.3**     | 63.5        |
| ChatGPT (March)*   | ?        | 61.5     | **7.94**     | 48.1            | 47.6     | 47.1     | 57.7          | **67.3**     | 74.9         | **70.1**    |
|                    |          |          |              |                 |          |          |               |              |              |             |
| OpenHermes 2.5     | 7B       | 59.3     | 7.54         | 48.2            | 49.4     | 46.5     | 57.5          | 63.8         | 73.5         | 59.9        |
| OpenOrca Mistral   | 7B       | 52.7     | 6.86         | 38.4            | 49.4     | 42.9     | 45.9          | 59.3         | 59.1         | 58.1        |
| Zephyr-ฮฒ^          | 7B       | 34.6     | 7.34         | 22.0            | 40.6     | 39.0     | 40.8          | 39.8         | 5.1          | 16.0        |
| Mistral            | 7B       | -        | 6.84         | 30.5            | 39.0     | 38.0     | -             | 60.1         | 52.2         | -           |

<details>
  <summary>Evaluation Details(click to expand)</summary>
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.

^: Zephyr-ฮฒ often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.

**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.

All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
</details>
<div>
<h3>HumanEval+</h3>
</div>

| Model                       | Size     | HumanEval+ pass@1 |
|-----------------------------|----------|------------|
| ChatGPT (December 12, 2023) | -        | 64.6       |
| WizardCoder-Python-34B-V1.0 | 34B      | 64.6       |
| **OpenChat 3.5 (Dec 10)**   | **7B**   | **63.4**   |
| OpenHermes 2.5              | 7B       | 41.5       |

<div>
<h3>OpenChat-3.5-1210 vs. Grok</h3>
</div>

|                   | License     | # Param | Average  | MMLU | HumanEval | MATH     | GSM8k    |
|-------------------|-------------|---------|----------|------|-----------|----------|----------|
| OpenChat 3.5 1210 | Apache-2.0  | **7B**  | **60.1** | 65.3 | **68.9**  | **28.9** | **77.3** |
| OpenChat 3.5      | Apache-2.0  | **7B**  | 56.4     | 64.3 | 55.5      | 28.6     | **77.3** |
| Grok-0            | Proprietary | 33B     | 44.5     | 65.7 | 39.7      | 15.7     | 56.8     |
| Grok-1            | Proprietary | ???B    | 55.8     | 73   | 63.2      | 23.9     | 62.9     |

*: Grok results are reported by [X.AI](https://x.ai/).

<div>
<h3>Massive Multitask Language Understanding in Chinese (CMMLU)</h3>
5-shot:
</div>

| Models   | STEM  | Humanities | SocialSciences | Other | ChinaSpecific | Avg   |
|----------|-------|------------|----------------|-------|---------------|-------|
| ChatGPT  | 47.81 | 55.68      | 56.5           | 62.66 | 50.69         | 55.51 |
| OpenChat | 38.7  | 45.99      | 48.32          | 50.23 | 43.27         | 45.85 |

<div>
<h3>Multi-Level Multi-Discipline Chinese Evaluation Suite (CEVAL)</h3>
<div>

| Model    | Avg   | STEM  | Social Science | Humanities | Others |
|----------|-------|-------|----------------|------------|--------|
| ChatGPT  | 54.4  | 52.9  | 61.8           | 50.9       | 53.6   |
| OpenChat | 47.29 | 45.22 | 52.49          | 48.52      | 45.08  |


<div align="center">
<h2> Limitations </h2>
</div>

**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:

- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges

**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.

**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.

<div align="center">
<h2> License </h2>
</div>

Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.

<div align="center">
<h2> Dataset Details </h2>
</div>

OpenChat 3.5 was trained with C-RLFT on a collection of publicly available high-quality instruction data, with a custom processing pipeline. We detail some notable subsets included here:

- [OpenChat ShareGPT](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset)
- [Open-Orca with FLAN answers](https://huggingface.co/datasets/imone/OpenOrca_FLAN)
- [Feedback-Collection](https://huggingface.co/datasets/kaist-ai/Feedback-Collection)
- Capybara [1](https://huggingface.co/datasets/LDJnr/Pure-Dove) [2](https://huggingface.co/datasets/LDJnr/Verified-Camel) [3](https://huggingface.co/datasets/LDJnr/LessWrong-Amplify-Instruct)
- [GOAT](https://huggingface.co/datasets/tiedong/goat)
- [Glaive](https://huggingface.co/datasets/glaiveai/glaive-code-assistant)
- [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
- [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- [OpenAssistant](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25)

<div align="center">
<h2> Citation </h2>
</div>

```
@article{wang2023openchat,
  title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
  author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
  journal={arXiv preprint arXiv:2309.11235},
  year={2023}
}
```

<div align="center">
<h2> Acknowledgments </h2>
</div>

We extend our heartfelt gratitude to AutoMeta and caesus from Alignment Lab AI, LDJ and Teknium from Nous Research, alpin and TearGosling from Pygmalion AI for their substantial contributions to data collection and model training.

Special thanks go to Changling Liu from GPT Desk Pte. Ltd., Qiying Yu at Tsinghua University, Baochang Ma, and Hao Wan from 01.AI company for their generous provision of resources. We are also deeply grateful to Jianxiong Li and Peng Li at Tsinghua University for their insightful discussions.

Furthermore, we appreciate the developers behind the following projects for their significant contributions to our research: [Mistral](https://mistral.ai/), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), [Llama 2](https://ai.meta.com/llama/), [Self-Instruct](https://arxiv.org/abs/2212.10560), [FastChat (Vicuna)](https://github.com/lm-sys/FastChat), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca.git), and [StarCoder](https://github.com/bigcode-project/starcoder). Their work has been instrumental in driving our research forward.