Bounding box detection
PyTorch
File size: 13,417 Bytes
6dd6cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
"""
 coding=utf-8
 Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
 Adapted From Facebook Inc, Detectron2
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
     http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.import copy
 """
import colorsys
import io

import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import numpy as np
import torch
from matplotlib.backends.backend_agg import FigureCanvasAgg

import cv2
from .utils import img_tensorize


_SMALL_OBJ = 1000


class SingleImageViz:
    def __init__(
        self,
        img,
        scale=1.2,
        edgecolor="g",
        alpha=0.5,
        linestyle="-",
        saveas="test_out.jpg",
        rgb=True,
        pynb=False,
        id2obj=None,
        id2attr=None,
        pad=0.7,
    ):
        """
        img: an RGB image of shape (H, W, 3).
        """
        if isinstance(img, torch.Tensor):
            img = img.numpy().astype("np.uint8")
        if isinstance(img, str):
            img = img_tensorize(img)
        assert isinstance(img, np.ndarray)

        width, height = img.shape[1], img.shape[0]
        fig = mplfigure.Figure(frameon=False)
        dpi = fig.get_dpi()
        width_in = (width * scale + 1e-2) / dpi
        height_in = (height * scale + 1e-2) / dpi
        fig.set_size_inches(width_in, height_in)
        ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
        ax.axis("off")
        ax.set_xlim(0.0, width)
        ax.set_ylim(height)

        self.saveas = saveas
        self.rgb = rgb
        self.pynb = pynb
        self.img = img
        self.edgecolor = edgecolor
        self.alpha = 0.5
        self.linestyle = linestyle
        self.font_size = int(np.sqrt(min(height, width)) * scale // 3)
        self.width = width
        self.height = height
        self.scale = scale
        self.fig = fig
        self.ax = ax
        self.pad = pad
        self.id2obj = id2obj
        self.id2attr = id2attr
        self.canvas = FigureCanvasAgg(fig)

    def add_box(self, box, color=None):
        if color is None:
            color = self.edgecolor
        (x0, y0, x1, y1) = box
        width = x1 - x0
        height = y1 - y0
        self.ax.add_patch(
            mpl.patches.Rectangle(
                (x0, y0),
                width,
                height,
                fill=False,
                edgecolor=color,
                linewidth=self.font_size // 3,
                alpha=self.alpha,
                linestyle=self.linestyle,
            )
        )

    def draw_boxes(self, boxes, obj_ids=None, obj_scores=None, attr_ids=None, attr_scores=None):
        if len(boxes.shape) > 2:
            boxes = boxes[0]
        if len(obj_ids.shape) > 1:
            obj_ids = obj_ids[0]
        if len(obj_scores.shape) > 1:
            obj_scores = obj_scores[0]
        if len(attr_ids.shape) > 1:
            attr_ids = attr_ids[0]
        if len(attr_scores.shape) > 1:
            attr_scores = attr_scores[0]
        if isinstance(boxes, torch.Tensor):
            boxes = boxes.numpy()
        if isinstance(boxes, list):
            boxes = np.array(boxes)
        assert isinstance(boxes, np.ndarray)
        areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
        sorted_idxs = np.argsort(-areas).tolist()
        boxes = boxes[sorted_idxs] if boxes is not None else None
        obj_ids = obj_ids[sorted_idxs] if obj_ids is not None else None
        obj_scores = obj_scores[sorted_idxs] if obj_scores is not None else None
        attr_ids = attr_ids[sorted_idxs] if attr_ids is not None else None
        attr_scores = attr_scores[sorted_idxs] if attr_scores is not None else None

        assigned_colors = [self._random_color(maximum=1) for _ in range(len(boxes))]
        assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
        if obj_ids is not None:
            labels = self._create_text_labels_attr(obj_ids, obj_scores, attr_ids, attr_scores)
            for i in range(len(boxes)):
                color = assigned_colors[i]
                self.add_box(boxes[i], color)
                self.draw_labels(labels[i], boxes[i], color)

    def draw_labels(self, label, box, color):
        x0, y0, x1, y1 = box
        text_pos = (x0, y0)
        instance_area = (y1 - y0) * (x1 - x0)
        small = _SMALL_OBJ * self.scale
        if instance_area < small or y1 - y0 < 40 * self.scale:
            if y1 >= self.height - 5:
                text_pos = (x1, y0)
            else:
                text_pos = (x0, y1)

        height_ratio = (y1 - y0) / np.sqrt(self.height * self.width)
        lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
        font_size = np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
        font_size *= 0.75 * self.font_size

        self.draw_text(
            text=label,
            position=text_pos,
            color=lighter_color,
        )

    def draw_text(
        self,
        text,
        position,
        color="g",
        ha="left",
    ):
        rotation = 0
        font_size = self.font_size
        color = np.maximum(list(mplc.to_rgb(color)), 0.2)
        color[np.argmax(color)] = max(0.8, np.max(color))
        bbox = {
            "facecolor": "black",
            "alpha": self.alpha,
            "pad": self.pad,
            "edgecolor": "none",
        }
        x, y = position
        self.ax.text(
            x,
            y,
            text,
            size=font_size * self.scale,
            family="sans-serif",
            bbox=bbox,
            verticalalignment="top",
            horizontalalignment=ha,
            color=color,
            zorder=10,
            rotation=rotation,
        )

    def save(self, saveas=None):
        if saveas is None:
            saveas = self.saveas
        if saveas.lower().endswith(".jpg") or saveas.lower().endswith(".png"):
            cv2.imwrite(
                saveas,
                self._get_buffer()[:, :, ::-1],
            )
        else:
            self.fig.savefig(saveas)

    def _create_text_labels_attr(self, classes, scores, attr_classes, attr_scores):
        labels = [self.id2obj[i] for i in classes]
        attr_labels = [self.id2attr[i] for i in attr_classes]
        labels = [
            f"{label} {score:.2f} {attr} {attr_score:.2f}"
            for label, score, attr, attr_score in zip(labels, scores, attr_labels, attr_scores)
        ]
        return labels

    def _create_text_labels(self, classes, scores):
        labels = [self.id2obj[i] for i in classes]
        if scores is not None:
            if labels is None:
                labels = ["{:.0f}%".format(s * 100) for s in scores]
            else:
                labels = ["{} {:.0f}%".format(li, s * 100) for li, s in zip(labels, scores)]
        return labels

    def _random_color(self, maximum=255):
        idx = np.random.randint(0, len(_COLORS))
        ret = _COLORS[idx] * maximum
        if not self.rgb:
            ret = ret[::-1]
        return ret

    def _get_buffer(self):
        if not self.pynb:
            s, (width, height) = self.canvas.print_to_buffer()
            if (width, height) != (self.width, self.height):
                img = cv2.resize(self.img, (width, height))
            else:
                img = self.img
        else:
            buf = io.BytesIO()  # works for cairo backend
            self.canvas.print_rgba(buf)
            width, height = self.width, self.height
            s = buf.getvalue()
            img = self.img

        buffer = np.frombuffer(s, dtype="uint8")
        img_rgba = buffer.reshape(height, width, 4)
        rgb, alpha = np.split(img_rgba, [3], axis=2)

        try:
            import numexpr as ne  # fuse them with numexpr

            visualized_image = ne.evaluate("img * (1 - alpha / 255.0) + rgb * (alpha / 255.0)")
        except ImportError:
            alpha = alpha.astype("float32") / 255.0
            visualized_image = img * (1 - alpha) + rgb * alpha

        return visualized_image.astype("uint8")

    def _change_color_brightness(self, color, brightness_factor):
        assert brightness_factor >= -1.0 and brightness_factor <= 1.0
        color = mplc.to_rgb(color)
        polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
        modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
        modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
        modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
        modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
        return modified_color


# Color map
_COLORS = (
    np.array(
        [
            0.000,
            0.447,
            0.741,
            0.850,
            0.325,
            0.098,
            0.929,
            0.694,
            0.125,
            0.494,
            0.184,
            0.556,
            0.466,
            0.674,
            0.188,
            0.301,
            0.745,
            0.933,
            0.635,
            0.078,
            0.184,
            0.300,
            0.300,
            0.300,
            0.600,
            0.600,
            0.600,
            1.000,
            0.000,
            0.000,
            1.000,
            0.500,
            0.000,
            0.749,
            0.749,
            0.000,
            0.000,
            1.000,
            0.000,
            0.000,
            0.000,
            1.000,
            0.667,
            0.000,
            1.000,
            0.333,
            0.333,
            0.000,
            0.333,
            0.667,
            0.000,
            0.333,
            1.000,
            0.000,
            0.667,
            0.333,
            0.000,
            0.667,
            0.667,
            0.000,
            0.667,
            1.000,
            0.000,
            1.000,
            0.333,
            0.000,
            1.000,
            0.667,
            0.000,
            1.000,
            1.000,
            0.000,
            0.000,
            0.333,
            0.500,
            0.000,
            0.667,
            0.500,
            0.000,
            1.000,
            0.500,
            0.333,
            0.000,
            0.500,
            0.333,
            0.333,
            0.500,
            0.333,
            0.667,
            0.500,
            0.333,
            1.000,
            0.500,
            0.667,
            0.000,
            0.500,
            0.667,
            0.333,
            0.500,
            0.667,
            0.667,
            0.500,
            0.667,
            1.000,
            0.500,
            1.000,
            0.000,
            0.500,
            1.000,
            0.333,
            0.500,
            1.000,
            0.667,
            0.500,
            1.000,
            1.000,
            0.500,
            0.000,
            0.333,
            1.000,
            0.000,
            0.667,
            1.000,
            0.000,
            1.000,
            1.000,
            0.333,
            0.000,
            1.000,
            0.333,
            0.333,
            1.000,
            0.333,
            0.667,
            1.000,
            0.333,
            1.000,
            1.000,
            0.667,
            0.000,
            1.000,
            0.667,
            0.333,
            1.000,
            0.667,
            0.667,
            1.000,
            0.667,
            1.000,
            1.000,
            1.000,
            0.000,
            1.000,
            1.000,
            0.333,
            1.000,
            1.000,
            0.667,
            1.000,
            0.333,
            0.000,
            0.000,
            0.500,
            0.000,
            0.000,
            0.667,
            0.000,
            0.000,
            0.833,
            0.000,
            0.000,
            1.000,
            0.000,
            0.000,
            0.000,
            0.167,
            0.000,
            0.000,
            0.333,
            0.000,
            0.000,
            0.500,
            0.000,
            0.000,
            0.667,
            0.000,
            0.000,
            0.833,
            0.000,
            0.000,
            1.000,
            0.000,
            0.000,
            0.000,
            0.167,
            0.000,
            0.000,
            0.333,
            0.000,
            0.000,
            0.500,
            0.000,
            0.000,
            0.667,
            0.000,
            0.000,
            0.833,
            0.000,
            0.000,
            1.000,
            0.000,
            0.000,
            0.000,
            0.143,
            0.143,
            0.143,
            0.857,
            0.857,
            0.857,
            1.000,
            1.000,
            1.000,
        ]
    )
    .astype(np.float32)
    .reshape(-1, 3)
)