Ontocord.AI
commited on
Commit
•
6dd6cd6
1
Parent(s):
bd2b542
Create visualizing_image.py
Browse files- visualizing_image.py +496 -0
visualizing_image.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
coding=utf-8
|
3 |
+
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
|
4 |
+
Adapted From Facebook Inc, Detectron2
|
5 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
you may not use this file except in compliance with the License.
|
7 |
+
You may obtain a copy of the License at
|
8 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
Unless required by applicable law or agreed to in writing, software
|
10 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
See the License for the specific language governing permissions and
|
13 |
+
limitations under the License.import copy
|
14 |
+
"""
|
15 |
+
import colorsys
|
16 |
+
import io
|
17 |
+
|
18 |
+
import matplotlib as mpl
|
19 |
+
import matplotlib.colors as mplc
|
20 |
+
import matplotlib.figure as mplfigure
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
24 |
+
|
25 |
+
import cv2
|
26 |
+
from .utils import img_tensorize
|
27 |
+
|
28 |
+
|
29 |
+
_SMALL_OBJ = 1000
|
30 |
+
|
31 |
+
|
32 |
+
class SingleImageViz:
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
img,
|
36 |
+
scale=1.2,
|
37 |
+
edgecolor="g",
|
38 |
+
alpha=0.5,
|
39 |
+
linestyle="-",
|
40 |
+
saveas="test_out.jpg",
|
41 |
+
rgb=True,
|
42 |
+
pynb=False,
|
43 |
+
id2obj=None,
|
44 |
+
id2attr=None,
|
45 |
+
pad=0.7,
|
46 |
+
):
|
47 |
+
"""
|
48 |
+
img: an RGB image of shape (H, W, 3).
|
49 |
+
"""
|
50 |
+
if isinstance(img, torch.Tensor):
|
51 |
+
img = img.numpy().astype("np.uint8")
|
52 |
+
if isinstance(img, str):
|
53 |
+
img = img_tensorize(img)
|
54 |
+
assert isinstance(img, np.ndarray)
|
55 |
+
|
56 |
+
width, height = img.shape[1], img.shape[0]
|
57 |
+
fig = mplfigure.Figure(frameon=False)
|
58 |
+
dpi = fig.get_dpi()
|
59 |
+
width_in = (width * scale + 1e-2) / dpi
|
60 |
+
height_in = (height * scale + 1e-2) / dpi
|
61 |
+
fig.set_size_inches(width_in, height_in)
|
62 |
+
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
63 |
+
ax.axis("off")
|
64 |
+
ax.set_xlim(0.0, width)
|
65 |
+
ax.set_ylim(height)
|
66 |
+
|
67 |
+
self.saveas = saveas
|
68 |
+
self.rgb = rgb
|
69 |
+
self.pynb = pynb
|
70 |
+
self.img = img
|
71 |
+
self.edgecolor = edgecolor
|
72 |
+
self.alpha = 0.5
|
73 |
+
self.linestyle = linestyle
|
74 |
+
self.font_size = int(np.sqrt(min(height, width)) * scale // 3)
|
75 |
+
self.width = width
|
76 |
+
self.height = height
|
77 |
+
self.scale = scale
|
78 |
+
self.fig = fig
|
79 |
+
self.ax = ax
|
80 |
+
self.pad = pad
|
81 |
+
self.id2obj = id2obj
|
82 |
+
self.id2attr = id2attr
|
83 |
+
self.canvas = FigureCanvasAgg(fig)
|
84 |
+
|
85 |
+
def add_box(self, box, color=None):
|
86 |
+
if color is None:
|
87 |
+
color = self.edgecolor
|
88 |
+
(x0, y0, x1, y1) = box
|
89 |
+
width = x1 - x0
|
90 |
+
height = y1 - y0
|
91 |
+
self.ax.add_patch(
|
92 |
+
mpl.patches.Rectangle(
|
93 |
+
(x0, y0),
|
94 |
+
width,
|
95 |
+
height,
|
96 |
+
fill=False,
|
97 |
+
edgecolor=color,
|
98 |
+
linewidth=self.font_size // 3,
|
99 |
+
alpha=self.alpha,
|
100 |
+
linestyle=self.linestyle,
|
101 |
+
)
|
102 |
+
)
|
103 |
+
|
104 |
+
def draw_boxes(self, boxes, obj_ids=None, obj_scores=None, attr_ids=None, attr_scores=None):
|
105 |
+
if len(boxes.shape) > 2:
|
106 |
+
boxes = boxes[0]
|
107 |
+
if len(obj_ids.shape) > 1:
|
108 |
+
obj_ids = obj_ids[0]
|
109 |
+
if len(obj_scores.shape) > 1:
|
110 |
+
obj_scores = obj_scores[0]
|
111 |
+
if len(attr_ids.shape) > 1:
|
112 |
+
attr_ids = attr_ids[0]
|
113 |
+
if len(attr_scores.shape) > 1:
|
114 |
+
attr_scores = attr_scores[0]
|
115 |
+
if isinstance(boxes, torch.Tensor):
|
116 |
+
boxes = boxes.numpy()
|
117 |
+
if isinstance(boxes, list):
|
118 |
+
boxes = np.array(boxes)
|
119 |
+
assert isinstance(boxes, np.ndarray)
|
120 |
+
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
|
121 |
+
sorted_idxs = np.argsort(-areas).tolist()
|
122 |
+
boxes = boxes[sorted_idxs] if boxes is not None else None
|
123 |
+
obj_ids = obj_ids[sorted_idxs] if obj_ids is not None else None
|
124 |
+
obj_scores = obj_scores[sorted_idxs] if obj_scores is not None else None
|
125 |
+
attr_ids = attr_ids[sorted_idxs] if attr_ids is not None else None
|
126 |
+
attr_scores = attr_scores[sorted_idxs] if attr_scores is not None else None
|
127 |
+
|
128 |
+
assigned_colors = [self._random_color(maximum=1) for _ in range(len(boxes))]
|
129 |
+
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
|
130 |
+
if obj_ids is not None:
|
131 |
+
labels = self._create_text_labels_attr(obj_ids, obj_scores, attr_ids, attr_scores)
|
132 |
+
for i in range(len(boxes)):
|
133 |
+
color = assigned_colors[i]
|
134 |
+
self.add_box(boxes[i], color)
|
135 |
+
self.draw_labels(labels[i], boxes[i], color)
|
136 |
+
|
137 |
+
def draw_labels(self, label, box, color):
|
138 |
+
x0, y0, x1, y1 = box
|
139 |
+
text_pos = (x0, y0)
|
140 |
+
instance_area = (y1 - y0) * (x1 - x0)
|
141 |
+
small = _SMALL_OBJ * self.scale
|
142 |
+
if instance_area < small or y1 - y0 < 40 * self.scale:
|
143 |
+
if y1 >= self.height - 5:
|
144 |
+
text_pos = (x1, y0)
|
145 |
+
else:
|
146 |
+
text_pos = (x0, y1)
|
147 |
+
|
148 |
+
height_ratio = (y1 - y0) / np.sqrt(self.height * self.width)
|
149 |
+
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
|
150 |
+
font_size = np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
|
151 |
+
font_size *= 0.75 * self.font_size
|
152 |
+
|
153 |
+
self.draw_text(
|
154 |
+
text=label,
|
155 |
+
position=text_pos,
|
156 |
+
color=lighter_color,
|
157 |
+
)
|
158 |
+
|
159 |
+
def draw_text(
|
160 |
+
self,
|
161 |
+
text,
|
162 |
+
position,
|
163 |
+
color="g",
|
164 |
+
ha="left",
|
165 |
+
):
|
166 |
+
rotation = 0
|
167 |
+
font_size = self.font_size
|
168 |
+
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
169 |
+
color[np.argmax(color)] = max(0.8, np.max(color))
|
170 |
+
bbox = {
|
171 |
+
"facecolor": "black",
|
172 |
+
"alpha": self.alpha,
|
173 |
+
"pad": self.pad,
|
174 |
+
"edgecolor": "none",
|
175 |
+
}
|
176 |
+
x, y = position
|
177 |
+
self.ax.text(
|
178 |
+
x,
|
179 |
+
y,
|
180 |
+
text,
|
181 |
+
size=font_size * self.scale,
|
182 |
+
family="sans-serif",
|
183 |
+
bbox=bbox,
|
184 |
+
verticalalignment="top",
|
185 |
+
horizontalalignment=ha,
|
186 |
+
color=color,
|
187 |
+
zorder=10,
|
188 |
+
rotation=rotation,
|
189 |
+
)
|
190 |
+
|
191 |
+
def save(self, saveas=None):
|
192 |
+
if saveas is None:
|
193 |
+
saveas = self.saveas
|
194 |
+
if saveas.lower().endswith(".jpg") or saveas.lower().endswith(".png"):
|
195 |
+
cv2.imwrite(
|
196 |
+
saveas,
|
197 |
+
self._get_buffer()[:, :, ::-1],
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
self.fig.savefig(saveas)
|
201 |
+
|
202 |
+
def _create_text_labels_attr(self, classes, scores, attr_classes, attr_scores):
|
203 |
+
labels = [self.id2obj[i] for i in classes]
|
204 |
+
attr_labels = [self.id2attr[i] for i in attr_classes]
|
205 |
+
labels = [
|
206 |
+
f"{label} {score:.2f} {attr} {attr_score:.2f}"
|
207 |
+
for label, score, attr, attr_score in zip(labels, scores, attr_labels, attr_scores)
|
208 |
+
]
|
209 |
+
return labels
|
210 |
+
|
211 |
+
def _create_text_labels(self, classes, scores):
|
212 |
+
labels = [self.id2obj[i] for i in classes]
|
213 |
+
if scores is not None:
|
214 |
+
if labels is None:
|
215 |
+
labels = ["{:.0f}%".format(s * 100) for s in scores]
|
216 |
+
else:
|
217 |
+
labels = ["{} {:.0f}%".format(li, s * 100) for li, s in zip(labels, scores)]
|
218 |
+
return labels
|
219 |
+
|
220 |
+
def _random_color(self, maximum=255):
|
221 |
+
idx = np.random.randint(0, len(_COLORS))
|
222 |
+
ret = _COLORS[idx] * maximum
|
223 |
+
if not self.rgb:
|
224 |
+
ret = ret[::-1]
|
225 |
+
return ret
|
226 |
+
|
227 |
+
def _get_buffer(self):
|
228 |
+
if not self.pynb:
|
229 |
+
s, (width, height) = self.canvas.print_to_buffer()
|
230 |
+
if (width, height) != (self.width, self.height):
|
231 |
+
img = cv2.resize(self.img, (width, height))
|
232 |
+
else:
|
233 |
+
img = self.img
|
234 |
+
else:
|
235 |
+
buf = io.BytesIO() # works for cairo backend
|
236 |
+
self.canvas.print_rgba(buf)
|
237 |
+
width, height = self.width, self.height
|
238 |
+
s = buf.getvalue()
|
239 |
+
img = self.img
|
240 |
+
|
241 |
+
buffer = np.frombuffer(s, dtype="uint8")
|
242 |
+
img_rgba = buffer.reshape(height, width, 4)
|
243 |
+
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
244 |
+
|
245 |
+
try:
|
246 |
+
import numexpr as ne # fuse them with numexpr
|
247 |
+
|
248 |
+
visualized_image = ne.evaluate("img * (1 - alpha / 255.0) + rgb * (alpha / 255.0)")
|
249 |
+
except ImportError:
|
250 |
+
alpha = alpha.astype("float32") / 255.0
|
251 |
+
visualized_image = img * (1 - alpha) + rgb * alpha
|
252 |
+
|
253 |
+
return visualized_image.astype("uint8")
|
254 |
+
|
255 |
+
def _change_color_brightness(self, color, brightness_factor):
|
256 |
+
assert brightness_factor >= -1.0 and brightness_factor <= 1.0
|
257 |
+
color = mplc.to_rgb(color)
|
258 |
+
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
|
259 |
+
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
|
260 |
+
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
|
261 |
+
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
|
262 |
+
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
|
263 |
+
return modified_color
|
264 |
+
|
265 |
+
|
266 |
+
# Color map
|
267 |
+
_COLORS = (
|
268 |
+
np.array(
|
269 |
+
[
|
270 |
+
0.000,
|
271 |
+
0.447,
|
272 |
+
0.741,
|
273 |
+
0.850,
|
274 |
+
0.325,
|
275 |
+
0.098,
|
276 |
+
0.929,
|
277 |
+
0.694,
|
278 |
+
0.125,
|
279 |
+
0.494,
|
280 |
+
0.184,
|
281 |
+
0.556,
|
282 |
+
0.466,
|
283 |
+
0.674,
|
284 |
+
0.188,
|
285 |
+
0.301,
|
286 |
+
0.745,
|
287 |
+
0.933,
|
288 |
+
0.635,
|
289 |
+
0.078,
|
290 |
+
0.184,
|
291 |
+
0.300,
|
292 |
+
0.300,
|
293 |
+
0.300,
|
294 |
+
0.600,
|
295 |
+
0.600,
|
296 |
+
0.600,
|
297 |
+
1.000,
|
298 |
+
0.000,
|
299 |
+
0.000,
|
300 |
+
1.000,
|
301 |
+
0.500,
|
302 |
+
0.000,
|
303 |
+
0.749,
|
304 |
+
0.749,
|
305 |
+
0.000,
|
306 |
+
0.000,
|
307 |
+
1.000,
|
308 |
+
0.000,
|
309 |
+
0.000,
|
310 |
+
0.000,
|
311 |
+
1.000,
|
312 |
+
0.667,
|
313 |
+
0.000,
|
314 |
+
1.000,
|
315 |
+
0.333,
|
316 |
+
0.333,
|
317 |
+
0.000,
|
318 |
+
0.333,
|
319 |
+
0.667,
|
320 |
+
0.000,
|
321 |
+
0.333,
|
322 |
+
1.000,
|
323 |
+
0.000,
|
324 |
+
0.667,
|
325 |
+
0.333,
|
326 |
+
0.000,
|
327 |
+
0.667,
|
328 |
+
0.667,
|
329 |
+
0.000,
|
330 |
+
0.667,
|
331 |
+
1.000,
|
332 |
+
0.000,
|
333 |
+
1.000,
|
334 |
+
0.333,
|
335 |
+
0.000,
|
336 |
+
1.000,
|
337 |
+
0.667,
|
338 |
+
0.000,
|
339 |
+
1.000,
|
340 |
+
1.000,
|
341 |
+
0.000,
|
342 |
+
0.000,
|
343 |
+
0.333,
|
344 |
+
0.500,
|
345 |
+
0.000,
|
346 |
+
0.667,
|
347 |
+
0.500,
|
348 |
+
0.000,
|
349 |
+
1.000,
|
350 |
+
0.500,
|
351 |
+
0.333,
|
352 |
+
0.000,
|
353 |
+
0.500,
|
354 |
+
0.333,
|
355 |
+
0.333,
|
356 |
+
0.500,
|
357 |
+
0.333,
|
358 |
+
0.667,
|
359 |
+
0.500,
|
360 |
+
0.333,
|
361 |
+
1.000,
|
362 |
+
0.500,
|
363 |
+
0.667,
|
364 |
+
0.000,
|
365 |
+
0.500,
|
366 |
+
0.667,
|
367 |
+
0.333,
|
368 |
+
0.500,
|
369 |
+
0.667,
|
370 |
+
0.667,
|
371 |
+
0.500,
|
372 |
+
0.667,
|
373 |
+
1.000,
|
374 |
+
0.500,
|
375 |
+
1.000,
|
376 |
+
0.000,
|
377 |
+
0.500,
|
378 |
+
1.000,
|
379 |
+
0.333,
|
380 |
+
0.500,
|
381 |
+
1.000,
|
382 |
+
0.667,
|
383 |
+
0.500,
|
384 |
+
1.000,
|
385 |
+
1.000,
|
386 |
+
0.500,
|
387 |
+
0.000,
|
388 |
+
0.333,
|
389 |
+
1.000,
|
390 |
+
0.000,
|
391 |
+
0.667,
|
392 |
+
1.000,
|
393 |
+
0.000,
|
394 |
+
1.000,
|
395 |
+
1.000,
|
396 |
+
0.333,
|
397 |
+
0.000,
|
398 |
+
1.000,
|
399 |
+
0.333,
|
400 |
+
0.333,
|
401 |
+
1.000,
|
402 |
+
0.333,
|
403 |
+
0.667,
|
404 |
+
1.000,
|
405 |
+
0.333,
|
406 |
+
1.000,
|
407 |
+
1.000,
|
408 |
+
0.667,
|
409 |
+
0.000,
|
410 |
+
1.000,
|
411 |
+
0.667,
|
412 |
+
0.333,
|
413 |
+
1.000,
|
414 |
+
0.667,
|
415 |
+
0.667,
|
416 |
+
1.000,
|
417 |
+
0.667,
|
418 |
+
1.000,
|
419 |
+
1.000,
|
420 |
+
1.000,
|
421 |
+
0.000,
|
422 |
+
1.000,
|
423 |
+
1.000,
|
424 |
+
0.333,
|
425 |
+
1.000,
|
426 |
+
1.000,
|
427 |
+
0.667,
|
428 |
+
1.000,
|
429 |
+
0.333,
|
430 |
+
0.000,
|
431 |
+
0.000,
|
432 |
+
0.500,
|
433 |
+
0.000,
|
434 |
+
0.000,
|
435 |
+
0.667,
|
436 |
+
0.000,
|
437 |
+
0.000,
|
438 |
+
0.833,
|
439 |
+
0.000,
|
440 |
+
0.000,
|
441 |
+
1.000,
|
442 |
+
0.000,
|
443 |
+
0.000,
|
444 |
+
0.000,
|
445 |
+
0.167,
|
446 |
+
0.000,
|
447 |
+
0.000,
|
448 |
+
0.333,
|
449 |
+
0.000,
|
450 |
+
0.000,
|
451 |
+
0.500,
|
452 |
+
0.000,
|
453 |
+
0.000,
|
454 |
+
0.667,
|
455 |
+
0.000,
|
456 |
+
0.000,
|
457 |
+
0.833,
|
458 |
+
0.000,
|
459 |
+
0.000,
|
460 |
+
1.000,
|
461 |
+
0.000,
|
462 |
+
0.000,
|
463 |
+
0.000,
|
464 |
+
0.167,
|
465 |
+
0.000,
|
466 |
+
0.000,
|
467 |
+
0.333,
|
468 |
+
0.000,
|
469 |
+
0.000,
|
470 |
+
0.500,
|
471 |
+
0.000,
|
472 |
+
0.000,
|
473 |
+
0.667,
|
474 |
+
0.000,
|
475 |
+
0.000,
|
476 |
+
0.833,
|
477 |
+
0.000,
|
478 |
+
0.000,
|
479 |
+
1.000,
|
480 |
+
0.000,
|
481 |
+
0.000,
|
482 |
+
0.000,
|
483 |
+
0.143,
|
484 |
+
0.143,
|
485 |
+
0.143,
|
486 |
+
0.857,
|
487 |
+
0.857,
|
488 |
+
0.857,
|
489 |
+
1.000,
|
490 |
+
1.000,
|
491 |
+
1.000,
|
492 |
+
]
|
493 |
+
)
|
494 |
+
.astype(np.float32)
|
495 |
+
.reshape(-1, 3)
|
496 |
+
)
|