https://huggingface.co/alibaba-damo/mgp-str-base with ONNX weights to be compatible with Transformers.js.
Usage (Transformers.js)
If you haven't already, you can install the Transformers.js JavaScript library from NPM using:
npm i @huggingface/transformers
Example: Optical Character Recognition (OCR) w/ onnx-community/mgp-str-base
import { MgpstrForSceneTextRecognition, MgpstrProcessor, load_image } from '@huggingface/transformers';
const model_id = 'onnx-community/mgp-str-base';
const model = await MgpstrForSceneTextRecognition.from_pretrained(model_id);
const processor = await MgpstrProcessor.from_pretrained(model_id);
// Load image from a URL
const url = "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/ocr-demo.png";
const image = await load_image(url);
// Preprocess the image
const result = await processor(image);
// Perform inference
const outputs = await model(result);
// Decode the model outputs
const generated_text = processor.batch_decode(outputs.logits).generated_text;
console.log(generated_text); // [ 'ticket' ]
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using ๐ค Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx
).
- Downloads last month
- 42
Inference API (serverless) does not yet support transformers.js models for this pipeline type.
Model tree for onnx-community/mgp-str-base
Base model
alibaba-damo/mgp-str-base