File size: 1,617 Bytes
37b0e2d
 
 
377986e
37b0e2d
 
 
 
 
76a36d6
 
377986e
76a36d6
 
 
 
37b0e2d
76a36d6
 
 
 
37b0e2d
76a36d6
 
 
37b0e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch

from typing import Any, Dict
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig


class EndpointHandler:
    def __init__(self, path=""):
        # load model and tokenizer from path
        self.tokenizer = AutoTokenizer.from_pretrained(path) # AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")

        config = AutoConfig.from_pretrained(name, trust_remote_code=True)
        config.attn_config['attn_impl'] = 'triton'
        config.init_device = 'cuda:0' # For fast initialization directly on GPU!
        config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
        
        self.model = AutoModelForCausalLM.from_pretrained(
            path, 
            config,
            torch_dtype=torch.float16,
            trust_remote_code=True
        )
        # self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = 'cuda'
        print('===> device', device)

    def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
        # process input
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # preprocess
        inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device)

        # pass inputs with all kwargs in data
        if parameters is not None:
            outputs = self.model.generate(**inputs, **parameters)
        else:
            outputs = self.model.generate(**inputs)

        # postprocess the prediction
        prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)

        return [{"generated_text": prediction}]