whisper-base-ar-quran-ft-hijaiyah
This model is a fine-tuned version of whisper-base-ar-quran on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1638
- Accuracy: 0.9802
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
0.3043 |
1.0 |
2266 |
0.7745 |
0.8075 |
0.9065 |
2.0 |
4532 |
0.7729 |
0.8671 |
0.7332 |
3.0 |
6798 |
0.6099 |
0.9028 |
0.2412 |
4.0 |
9064 |
0.4158 |
0.9345 |
0.6118 |
5.0 |
11330 |
0.4587 |
0.9385 |
0.0001 |
6.0 |
13596 |
0.2835 |
0.9603 |
0.0003 |
7.0 |
15862 |
0.2181 |
0.9643 |
0.0001 |
8.0 |
18128 |
0.2006 |
0.9683 |
0.0001 |
9.0 |
20394 |
0.1962 |
0.9722 |
0.0 |
10.0 |
22660 |
0.1638 |
0.9802 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3